ВЗАИМОДЕЙСТВИЕ КОМПОНЕНТОВ AgSbSe₂ и PbSe, ТЕРМОЭЛЕКТРИЧЕСКИЕ СВОЙСТВА МОНОКРИСТАЛЛОВ НА ИХ ОСНОВЕ

Н. А. Божко, С. А. Федосов, А. В. Новосад, А. П. Третяк, Н. В. Иллюшко Восточноевропейский национальный университет им. Леси Украики, Луцк, Украина E-mail: ovosa@ukr.net

Построено политермическое сечение $AgSbSe_2$ —PbSe, которое является квазибинарной системой с перитектическим типом взаимодействия между компонентами. Установлены два ряда твердых растворов: твердые растворы на основе $AgSbSe_2$ достигают 53 мол. % PbSe и твердые растворы на основе PbSe достигают 8 мол. % $AgSbSe_2$. С обоих типов твердых растворов выращены монокристаллы восьми составов, для которых исследованы термоэлектрические и некоторые электрические свойства.

Установлено, что кристаллы AgSbSe₂—PbSe принадлежат к полупроводникам р-типа проводимости. Показано, что увеличение содержания PbSe в монокристаллах на основе AgSbSe₂ приводит к росту коэффициента термо-эдс и уменьшению удельной электропроводимости. Проанализирована зависимость термоэлектрической мощности от состава твердого раствора. Рассчитанная термоэлектрическая добротность (ZT) для AgSbSe₂ составила $2,2\cdot10^{-2}$. При расчетах считалось, что коэффициент теплопроводимости $\chi_{\text{tot}} \approx 0.6\cdot10^{-2}$ Bt/($K\cdot$ cm) [1].

Исследованы электрические, гальваномагнитные и термоэлектрические свойства монокристаллов PbSe–AgSbSe2 с содержанием 0, 5, 8 мол. % AgSbSe2. Определены значения электропроводимости, коэффициента Зеебека, концентрация и Холловская подвижность носителей заряда. Проведен расчет коэффициента теплопроводимости соединений. По данным коэффициентов Зеебека, теплопроводимости и электропроводимости определены термоэлектрическая мощность ($\alpha^2 \sigma$) и добротность (ZT) материала. Максимальное значение термоэлектрической мощности и добротности имели монокристаллы PbSe: при $T = 300 \text{ K } ZT \approx 0,42 \text{ и } \alpha^2 \sigma \approx 17 \text{ мкВт/см·K}^2$.

Работа выполнена при поддержке Министерства образования и науки Украины в рамках госбюджетной НИР № 0115U002348.

1. Schmidt M., Zybala R., Wojciechowski K. T. // Ceramic Materials. 2010. Vol. 62, № 4 P. 465–470.