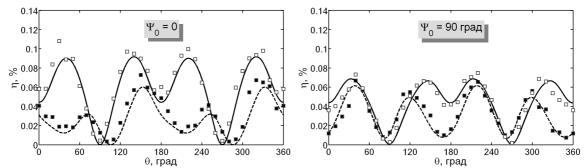
ИССЛЕДОВАНИЕ ОРИЕНТАЦИОННОЙ ЗАВИСИМОСТИ ДИФРАКЦИОННОЙ ЭФФЕКТИВНОСТИ ГОЛОГРАММ В ${\rm Bi_{12}SiO_{20}}$ ПРИ РАЗЛИЧНЫХ ТОЛЩИНАХ КРИСТАЛЛА

А. В. Макаревич 1 , В. В. Шепелевич 1 , О. Н. Проц 1 , К. Ю. Пиляк 1 , П. И. Ропот 2


¹Мозырский государственный педагогический университет им. И. П. Шамякина, Мозырь ²Институт физики им. Б. И. Степанова НАН Беларуси, Минск E-mail: vasshep@inbox.ru

При экспериментальном исследовании дифракционной эффективности голографических решеток в фоторефрактивных кристаллах особое внимание обычно уделяется выходным характеристикам голограмм, сформированных при различных значениях азимутов поляризации взаимодействующих в кристалле световых волн и пространственных ориентаций кристалла. Фиксированным параметром при проведении таких экспериментов, как правило, остается толщина используемого кристаллического образца (см., например, [1, 2]). Однако, в [3] недавно была показана возможность и описана методика экспериментального исследования зависимости дифракционной эффективности голограмм, записанных в кристалле типа силленита $\text{Bi}_{12}\text{SiO}_{20}$ (BSO), от его толщины. При проведении исследований использовался один кристаллический образец среза ($\overline{1}\,\overline{1}0$) с фиксированной толщиной $d_0 = 8$ мм.

Полученные экспериментальные данные о зависимостях дифракционной эффективности голограмм η от ориентационного угла θ кристалла BSO для двух выбранных значений толщины 5.2 мм и 8 мм при фиксированных азимутах линейной поляризации считывающего опорного пучка $\Psi_0 = 0$ и $\Psi_0 = 90^\circ$ представлены на рисунке. Следует отметить, что в [3] особое внимание было уделено теоретическим и экспериментальным зависимостям $\eta(\theta, d)$ при фиксированных значениях Ψ_0 и $\eta(d)$ при фиксированных θ и Ψ_0 , а зависимости $\eta(\theta)$ при фиксированных Ψ_0 и d не рассматривались. Однако именно такие зависимости также могут быть полезными при оптимизации результатов подобных исследований.

При теоретическом анализе экспериментальных данных были использованы ранее полученные результаты из [4, 5] и параметры кристалла BSO из [4–6]. Направление отсчета ориентационного угла θ от кристаллографического направления [001] к вектору голографической решетки \vec{K} выбиралось в соответствии с [5]. Амплитуда напряженности электрического поля пространственного заряда E_{sc} составляла 37.9×10^3 В/м и со-

ответствовала наилучшей корреляции теории с экспериментальными данными.

Рис.1. Зависимость дифракционной эффективности η голограмм, записанных в кристалле BSO среза ($\overline{1}\,\overline{1}0$) при фиксированных значениях Ψ_0 и d, от ориентационного угла кристалла θ :

■ и \Box – экспериментальные точки при d = 5.2 мм и 8 мм соответственно; штриховая и сплошная линии – результаты теоретического анализа при d = 5.2 мм и 8 мм соответственно

Из рисунка видно, что экспериментальные данные и теоретические кривые имеют удовлетворительное согласование. При этом следует отметить, что экспериментальные значения η были одновременно получены нами более чем для трехсот дискретных значений толщин d исследованного кристалла BSO. Разработанная экспериментальная методика может эффективно применяться в прецизионных исследований других объемных голографических сред.

Работа выполнена при поддержке Министерства образования Республики Беларусь (задание 2.2.18 Государственной программы научных исследований «Электроника и фотоника») и БРФФИ (проект Ф15-154), а также Минобрнауки Российской Федерации в рамках базовой части Госзадания на 2015 год.

- 1. *Петров М. П., Степанов С. И., Хоменко А. В.* Фоторефрактивные кристаллы в когерентной оптике. Санкт-Петербург: Наука, 1992. 320 с.
- 2. *Solymar L., Webb D. J., Grunnet-Jepsen A.* The Physics and Applications of Photorefractive Materials. Oxford: Clarendon Press, 1996. 493 p.
- 3. *Макаревич А. В., Шепелевич В. В., Ропот П. И. и др.* // Письма в ЖТФ. 2015. Т 41, № 19. С.46–54.
- 4. Шандаров С. М., Шандаров В. М., Мандель А. Е., Буримов Н. И. Фоторефрактивные эффекты в электрооптических кристаллах. Томск: ТУСУР, 2007. 242 с.
- 5. Шепелевич В. В. Голография в фоторефрактивных оптически активных кристаллах. Минск: Изд. центр БГУ, 2012. 254 с.
- 6. Блистанов А. А., Бондаренко В. С., Переломова Н. В. и др. Акустические кристаллы / Под ред. М. П. Шаскольской. М.: Наука, 1982. 632 с.