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Geometric Scalar Gravity
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We review the main properties of the recently proposed the Geometric Scalar Gravity
(GSG), emphasizing its agreement with classical tests of the gravitational field in the solar
system and the amplitude of the gravitational radiation.

PACS numbers: 04.20.-q, 04.50.Kd, 04.70.Bw, 11.10.-z
Keywords: modified gravity, gravity, black hole solution

1. Introduction

Since general relativity (GR) is becoming
centenary, in the near past few papers [1] have
revisited its construction and previous theories
of gravity that failed in trying to generalized
the Newtonian one which, of course, include
the scalar gravity. The main drawbacks of these
ancient proposals can be summarized as follows:
(7) there is a preferred-frame, represented by the
global Lorentz invariance; (i7) the gravitational
field source is the trace of the energy-momentum
tensor. (ii7) the flat Minkowski background is
observable.

Notwithstanding, some theories involving
scalar fields in different scenarios have been
proposed up to now, trying to explain the
observational tests where GR is not enough and,
here and there, bringing in new ideas.

2. GSG in a nutshell

First of all, let us remark the main properties
of the GSG [2|: (i) it satisfies the general
covariance principle; (i7) the description of the
gravitational interaction is done through a scalar
field ®@; (ii7) the dynamics of @ is nonlinear; (iv)
all kinds of matter and energy interact with ®
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only through the gravitational metric

g = OéT]‘LW 48 OFDI¥ O

where w = n*"0,90,®; (v) test particles follow
geodesics relative to ¢g"”. We have a = a(®) and
B = B(®). Also, the auxiliary metric n*¥ is non
observable. All fields of the standard model are
coupled to ¢"¥ and its derivatives in a covariant,
universal and minimal way. It means that gravity
is a geometrical phenomenon.

There are many ways of seeing the
appearance of a curved space-time in this context
[3]. The simplest one can be derived from the
statement below:

Theorem 1. Consider the Lagrangian L =
V(®)w, whose equation of motion corresponds to
a nonlinear dynamics. This equation is equivalent
to the Klein-Gordon one [J® = 0 in the metric
¢, with a+ B =a3 V.,

The Newtonian limit for a test particle
geodesic motion in gy, is reproduced if a =
e 2% To determine [, we use the classical
tests of gravity for a static and spherically
symmetric configuration. In this case, the
symmetries suggest that ® = ®&(R). Then,
we take the background metric in spherical
coordinates (¢, R,0,¢) and do the change R =

a(r)r. This gives a gravitational metric like
ds® = (1/a)dt? B dr? r? d Q2 where

2
we denote B = aaTﬁ (ii—fr%—l) .
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By successive approximations, we obtained
V(®) = (1/4)(e® — 3¢3®)? which yields

1 TH
where 7y = 2MG/c? due to the weak field limit
of the scalar field ®. Finally, the line element can
be written down as

-1
ds? = (1 _ LH) dt? — (1 _ LH) dr? — r2d02,
r r
(2)
which is equal to the Schwarzschild metric. If new
observations require modification of the metric

near to a compact object, then the shape of the
potential V(@) should be changed.

3. GSG dynamics in the presence
of matter

Now we briefly describe how matter couples
to ® through ¢"”. We start with the action
for ® written in the Minkowski metric and
then, from the variation with respect to ®, we
obtain an expression that should be rewritten in
terms of ¢"¥ by using the Theorem. After, we
add the Lagrangian of the matter, makes the
variation w.r.t ¢"” to define T}, as usual and the
general covariance guarantees its conservation.
Ultimately, once d¢"” is functionally dependent
of 0@, we rewrite the results in terms of §® and,
after some calculation, we get

VV O = ky. (3)

This equation describes the dynamics of GSG in
the presence of matter. The quantity x involves a
non-trivial coupling between V,® and T},,. In the
Newtonian limit, the Poisson equation is achieved
by fixing x = 87G/c*.

4. Gravitational Radiation

Following the main lines presented in [4], we
provide an estimation of the order of magnitude
of the gravitational waves (GW) using GSG. We

bound the discussion to the simplest case of the
dust. Then, we use the Theorem to rewrite Eq.
(3) and the energy density p = app in the
Minkowski background. The equation of motion

for ® becomes
k|2a—9 1\ o2
0o = w—2—) —— .
[ <a¢v)cw394
(4)

T2 |ka-3

Matter conservation implies that there is a
conserved mass which is the non-radiative term
of the scalar field. By using the Green functions
to solve Eq. (4), the scalar field ® is proportional
to the integral of the right hand side of Eq. (4)
evaluated at the retarded time ¢ — [x — x'|. Then,
in the wave zone regime, after doing a power law
expansion and correct approximations, we obtain
the leading-order radiative term in the spherically
symmetric case

e

O(t,r) = — "

{/dr’r'2 [Qo (11<I> + vz)]ret
+0@)}, (5)

Now we use Eq. (5) and the virial relation to
estimate ® for a source of mass M, radius R and
velocity v, in the weak-field regime:

GM [v\?2
vew (G) ©

The definition of the total rate of energy
emission d€/dt in the wave zone is proportional
to (r®)? where we used the virial relation and T},
in flat space to express the radiative energy flux

as TY" = (1/47G)®2. Finally, we get

e & (E)m < (GM ’ (7)
dt G \c G\ R? )
Note that GSG provides a monopole radiation
for a spherically symmetric mass distribution,

which is of the same order of magnitude of the
quadrupole radiation in GR.

5. Concluding Remarks

GSG satisfies many requirements of a good
theory of gravity: it is covariant, background
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independent (similarly to the field theory
formulation of GR) and matter interacts with ®
only through the gravitational metric ¢*”. So,
the traditional drawbacks of scalar gravity are
overcome.

It is clear that a careful analysis on GW in
this context should be done. The aim of Sec. 4
was to show that GSG provides the same order of
magnitude for the radiation G/c® in a completely
different matter distribution. The crucial result

will be the precise evaluation of the binary pulsar
timing. This is non-trivial issue, but we will do
this in the near future.
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