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Fermionic Dark Matter Plus Baryons in Dwarfs Galaxies
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A generalization of the Jeans equations in the context of galactic dynamics is developed
for a multi-component self-gravitating system composed of dark matter particles and stars.
In addition to the luminous profile, an underlying fermionic phase–space density for the
dark component is assumed. Under the ansatz of isotropy, spherical symmetry and constant
dispersion velocities, this approach is applied to typical well resolved nucleated dwarf
galaxies, to obtain novel dark matter density profiles showing central mass concentrations at
pc distance–scales. Narrow constraints on the mass of the dark matter candidate of m ∼ 1
keV are obtained.
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1. Introduction

In the realm of galactic dynamics, baryonic

and Dark Matter (DM) components are usually

treated in the literature in terms of the Jeans

equations (see e.g., [1] for a full development

of the theory and next section for a brief

introduction). When dealing with dwarf galaxies

it is usually assumed that the underlying

gravitational potential Φ(r) in halo regions is

dominated by the DM component. This ansatz

together with assumptions of time-independent

systems, spherical symmetry with no angular

momentum dependence and constant line-of-

sight velocity dispersions σlos (LOSVD), allows

to break the Jeans degeneracy appearing in

anisotropic systems (see e.g. [1]). In this case,

it is possible to fully solve the Jeans equations

to express the DM density profile in terms

of the observables: σlos and Σ(R), the last

being the surface brightness (see e.g. [2] for a

theoretical approach on this matter, and [3] for

a phenomenological approach).

The main motivation of this work is based
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on observations of the well resolved nucleated

dwarf galaxies as observed and studied in [4],

together with the novel theoretical approach

introduced in [5] and [6] to model the distribution

of DM in normal galaxies. This approach relies

on a self-gravitating system of thermal and

semi-degenerate keV fermions, whose equilibrium

configurations predicts a dark compact object

(below parsec scales) plus an extended DM halo

providing flat rotation curves in agreement with

observations. Thus, the objective of this work

is to provide a theoretical background based on

the Jeans equations to deal in a self-consistent

way with baryonic and DM components from

the center up to the halo of well resolved dwarf

galaxies. In this new picture, the assumption

of considering an overall gravitational potential

dominated by the DM component has to be

relaxed to properly account for the gravitational

effect of the baryons towards the center.

The nucleated regions (at pc scales) arising

in the majority of dwarfs galaxies is a non-well

understood issue (see e.g., [4] and referencies

therein). Therefore, the final objective of this

more general approach, even under the ideal and

simplifying hypothesis adopted, is to give more

light on this matter by providing an underlying
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fermionic phase–space distribution for the dark

component which naturally condenses through

the center due to quantum pressure.

2. Generalized formalism for a

system of DM plus baryons

The specific Jeans equation under the

general assumptions of time-independent

systems in spherical symmetry with no angular

momentum dependence reads (see e.g [1] chapter

4):

d

dr
(ν(r)v2r ) = −ν(r)

d

dr
Φ(r) . (1)

Here Φ(r) is the gravitational potential, v2r is

the mean square radial velocity and ν(r) ≡
g/h3

∫
d3v f(r, v2) is the probability density to

find a given component of the system at r;

in the last f(r, v2) is a corresponding phase–

space distribution function, g is a particle state

degeneracy, and h is the Planck constant.

The equation (1) is a hydrostatic

equilibrium-like equation, and differs only

in that ν(r) represents a probability density

instead of a mass density, and that the mean

particle velocity replaces the fluid velocity; being

therefore ν(r)v2r the pressure-like term.

The objective of this section is to generalize

the hydrostatic equilibrium-like equation

(1) to a more general case of a multiple-

component system of point masses in dynamical

equilibrium. For definiteness, we will consider

a self-gravitating system composed by N1

identical collisionless dark matter particles and

N2 identical collisionless stars, neglecting any

possible interaction (other than gravitational)

between both kinds of matter. Therefore, within

this more general effective treatment, we can

write the analogous of Eq. (1) but in terms of the

mass density and pressure terms as follows:

d

dr
PT (r) = −ρT (r)

d

dr
ΦT (r) , (2)

where PT (r) and ρT (r) are the total pressure and

total mass density of the multi-component system

composed by DM particles and stars (index T is

for total hereafter in text).

The following step is to write Eq. (2) in

terms of each pressure and density components.

This is, by assuming the following decompositions

PT (r) = PL(r) + PDM (r) and ρT (r) = ρL(r) +

ρDM (r), Eq. (2) reads

dPL(r)

dr
+
dPDM (r)

dr
+(ρL + ρDM (r))

dΦT (r)

dr
= 0 .

(3)

Because we are here assuming a possible linear

independence between the gravitational effects of

each component, plus the non-interacting (other

than gravity) nature between the two matter

components, we can write (3) as a system of two

ordinary differential equations as follows,

d

dr
(j(r)σ2

r ) = −j(r)
d

dr
ΦT (r) , (4)

d

dr
PDM (r) = −ρDM (r)

d

dr
ΦT (r) . (5)

We have expressed the luminous pressure

(PL(r) ≡ j(r)σ2
r ) in terms of the three-

dimensional luminosity density j(r) and the

(luminous) radial dispersion velocity σr. The

luminosity density also appears in the right side

of the equation for consistency, when considering

we also adopt here a constant mass-to-light

ratio Υ = const, defined as ρL(r) = Υj(r).

Notice that under the symmetries adopted here,

the (luminous) dispersion velocity σr coincides

with both, the corresponding mean square radial

velocity and also with the observable σlos (see e.g.

[1]).

The above system of equations has to be

considered together with the Poisson equation,

∇2ΦT (r) = 4πGρT (r) . (6)

With the aim of obtaining a unique equation

which contain the information of the system (4–

5), we divide both equations to eliminate the

gravitational gradient, and separate each matter
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component functions at each side of the new

equation, to obtain,

1

ρDM (r)

d

dr
PDM (r) =

1

j(r)

d

dr
j(r)σ2

r . (7)

The equation (7) will be considered from

now as a Jean master equation, containing the

information of both kinds of matter which self-

gravitates in an unique system.

We turn now to deal with the equation of

state of the dark matter model.

Here we will limit to deal with the

parametric equation of state of a non-relativistic

self-gravitating Fermi gas, as this physical regime

is more than sufficient when dealing with normal

galaxies, and in particular as in this work, dwarf

galaxies. Thus we have (the spin degeneracy has

been taken g = 2),

ρDM (r) =
m4

π2~3

∫
∞

0
v2fDM (r, v2) dv, (8)

PDM (r) =
1

3

m4

π2~3

∫
∞

0
v4fDM (r, v2) dv, (9)

where fDM (r, v2) is given by

fDM (r, v2) =
1

exp [(mv2/(2kT )− θ(r)] + 1
.

(10)

where m is the fermion mass, T is (some

constant) temperature of the isothermal dark

matter component, θ(r) = µ(r))/kT is the

degeneracy parameter defined in terms of the

gravitationally coupled chemical potential µ(r),

and k is the Boltzmann constant. The infinite

integrals in (8–9) can be expressed in terms

of the Polylogarithmic special functions Lis(z)

of order s and argument z. Considering that

Lis(−z) = −Γ(s)−1
∫
∞

0 dt ts−1/[exp (t)/z + 1],

with t = mv2/(2kT ), z = exp (θ(r)), and s =

3/2 or s = 5/2 in correspondence with (8) or

(9) respectively. If the following property for the

derivative of the Polylogarithm d[Lis(z(r))]/dr =

z′(r)/z(r)Lis−1(z(r)) is used, we directly have for

the left side in Eq. (7)

1

ρDM (r)

dPDM (r)

dr
=

kT

m

d

dr
θ(r) . (11)

The equation (11) will be considered from

now as a dark matter master equation, containing

only information about the equation of state of

the dark matter component.

Thus, we now combine the two master

equations (7) and (11) in one unique equation

given by,

1

j(r)

d

dr
(j(r)σ2

r ) =
kT

m

d

dr
θj(r) . (12)

It is important to notice that the equation (12) is

an ordinary linear differential equation in θj(r),

this last being interpreted as the degeneracy

parameter affected by the gravitational effect of

the baryonic distribution j(r). Notice that on the

left side of Eq. (12) we have the observables, and

on the right side we have the parameters of the

dark matter component (T, θj ,m), with T the DM

temperature which must be found to fully solve

the equations.

Once the solution for the degeneracy

parameter θj(r) is obtained from the observables

σ ≡ σr and j(r), this must be replaced in the

Polylogarithm variant of the equation (8) to yield

the following important expression for the dark

matter density function,

ρDM (r) = −m5/2(kT )3/2√
2π3/2~3

Li3/2 (− exp (θj(r)))

(13)

3. Application to nucleated dwarf

galaxies

The dwarf galaxies are an excellent

astrophysical laboratory to study distribution

and nature of dark matter particles because

they belong to the most dark matter-dominated

objects in the Universe as demonstrated in

[7]. Recently, in [4] a big sample of about

70 dwarf galaxies in the Coma cluster (of

distance D = 100 Mpc) were analyzed from

high-resolution spectroscopic and photometric

data, evidencing a nucleated luminosity profile
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through the center in the majority of the cases.

It is believed that this central light excess is an

imprint of the formation history of these galaxies,

but there is no closed explanation of the causes

and processes which leads to this new structure

at pc distance–scales or below. The application

of the generalized approach here introduced

pretends to give more light to this important

issue.
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FIG. 1. A double-component Sérsic-Gaussian model
fit to a typical observed surface brightness Σ(R) in
(L⊙/pc

2) as considered in [4].

The nucleated surface brightness profiles

observed in dwarf galaxies [4], are typically

modeled by a Sérsic+Gaussian model of the form

(see also Fig. 1)

Σ(R)

(L⊙/pc2)
= Σ0 e

−0.5(R/Rc)2 +Σe e
−b(R/Re−1).

(14)

where Σ0 is the central observed value of the

surface brightness and Σe is the effective surface

brightness, while Rc and Re are the central core

scale radius and the effective radius respectively.

It is important to notice that the Sérsic index

n in (14) has been taken equal to unity as it

is representative of the majority of the sample

considered in [4]. The value of b depends on n

(see e.g. [8]), and in the cases analyzed here (i.e.

n = 1) it is b ≈ 1.66. The three dimensional

luminosity density profile j(r) is obtained through
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FIG. 2. Two different dimensionless dark matter
density profiles in correspondence with the free
parameters θ0j = −0.2 and θ0j = −0.7 implying a
dark matter dominance of ∼ 90% and ∼ 50% at Re

respectively. These dark profiles are obtained from the
dynamical multi-component approach here developed
and are contrasted against the total mass density
profile as obtained directly from the observables,
nicely showing how light follows dark matter all along
the configuration.

the Abel de-projection formula to yield the

following analytic expression,

j(r)

(L⊙/pc3)
=

1.25

π

Σ0

Rc
e−0.5(r/Rc)2 +

7.92

π

Σe

Re
K0(1.6r/Re) (15)

where K0(x) is the modified Bessel function of

the second kind and of order 0. We adopt typical

values of luminosity and scale-radii in dwarfs as

shown in [4]: Σ0 = 560 L⊙/pc2, Σe = 40 L⊙/pc2,
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Rc = 25 pc, Re = 850 pc. The constant line-of-

sight velocity dispersion adopted here is σlos ≡
σr = 9 km/s, according to [4], thus implying a

total (integrated) mass-to-light ratio of Υ = 1.6

as obtained from [4] (see Fig. 12 of that paper).

The DM temperature T needed to finally

solve Eqtn. (12) is obtained by assuming

DM predomination in the halo region, where

clearly the Maxwellian regime in the Fermi-Dirac

distribution function is reached (i.e. µ(r)/kT <<

−1). Therefore we must have necessarily T ≈
mσ2

DM/k, where σDM is the DM one-dimensional

dispersion velocity. Now, σDM can be obtained

from the flat part of the DM rotation curve

proper of this classical regime, where the following

relation holds (see e.g. [1]) vcirc =
√
2σDM .

With this we have the desired DM temperature

as T = mv2circ/(2k). In what follows we adopt

vcirc = 13 km/s, being a typical circular velocity

in dwarf galaxies as shown in [3]; leading to

kT/m = v2circ/2 (km/s)2, most important in order

to solve Eq. (12).

The function θj(r) is obtained by integration

of the equation (12) between r0 and r, with σ2
r =

81 (km/s)2 and kT/m = 84.5 (km/s)2, to yield

θj(r) = 0.95 ln [j(r)/j(r0)] + θj(r0), with j(r0 =

4 pc)= 12.3 L⊙/pc3, being r0 the innermost

resolved radius for a typical dwarf galaxy as

studied in [4].

Once with the solution for θj(r), and by

using Eq. (13) together with the total mass

density ρT (r) = Υj(r), it is possible to obtain

the ratio between them. This ratio is calculated

in dimensionless units to obtain an expression

only in terms of the free parameter θ0j (i.e.

independently of the fermion mass). For this,

Eq. (13) is normalized dividing by ρDM
∗ =

m4v3circ/(4π
3/2

~
3), while ρT (r) is normalized

dividing by the central total mass density

ρT0 ≈ 20M⊙/pc
3. Therefore the new normalized

formulas are

ρDM
n (r) = −Li3/2[−(j(r)/j0)

0.95eθ
0

j ]; (16)

ρTn (r) = Υj(r)/ρT0 . (17)

In Fig. 2 we show the (normalized) total mass

density profile typical of a nucleated dwarf galaxy

in the Coma cluster ρTn (r) together with two

different ρDM
n (r) for two different values of θ0j .

The value of θ0j = −0.4 is selected assuming a

dark matter dominance of ∼ 94% at Re (and a

dominance of ∼ 55% at r0), while θ0j = −0.7

corresponds for a dark matter dominance of ∼
70% at Re (with a ∼ 42% at r0). Values of θ0j > 0

are prohibited because otherwise the dark matter

density would overcome the total mass density.

Once the precise DM dominance at the

center of the configuration r0 is known, the ‘ino’

mass m can be obtained from the DM density

equation ρDM
n (r) together with the normalization

factor ρDM
∗ . The calculations in the two cases

here assumed θ0j = −0.4 and θ0j = −0.7 leads

respectively, to rest fermion masses of m =

1.15 keV/c2 and m = 1.14 keV/c2; implying a

small effect of few 101 eV/c2 due to the different

dark matter halo dominance adopted. These mass

values have to be seriously considered only as

an order of magnitude due to many different

simplifying assumptions adopted such as spherical

symmetry and constant σlos and Υ, being not

necessarily the case in real dwarf galaxies.

4. Conclusions

In conclusion, from this two-component (DM

plus stars) dynamic approach, and due to semi-

degenerate nature of the dark matter phase–space

adopted here, it is possible to better understand

the so-called central light excess observed in the

light profiles of many dwarf galaxies. This is,

the fact that the dominating DM component

condenses through the center due the (fermionic)

quantum pressure, it generates a deepen in the

gravitational potential well in which the baryonic

component naturally falls in, generating as a

response a nucleated behavior in the light profile

we observe at pc distance-scales or below. The

second, and most important outcome of this

approach, is that once the dark matter dominance

is known at the effective radius Re, the ‘ino’ mass
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value can be obtained from the equations, falling

in the keV region.

Moreover, we want to emphasize the

potential importance of this approach in views

of future high-resolution observations through the

center of nearby dwarfs which will reach sub-pc

distance-scales; leading to a better understanding

in the role of dark matter in connection with

massive dark central objects generally interpreted

as intermediate massive black holes.

Acknowledgement

We appreciate to the National Academy

of Sciences of Belarus for its hospitality during

completion of this work.

References

[1] Galactic Dynamics, 2nd edn. Eds. J. Binney and
S. Tremaine. (Princeton University Press, 2008).

[2] N. W. Evans, J. An, M. G. Walker. Mon. Not.
Roy. Astr. Soc. 393, L50 (2009).

[3] M. G. Walker, M. Mateo, E. W. Olszewski, J.
Peсarrubia, N. W. Evans, G. Gilmore. Astroph.
J. 704, 1274 (2009).

[4] E. Kourkchi, H. G. Khosroshahi, D. Carter, B.
Mobasher. Mon. Not. Roy. Astr. Soc. 420, 2835
(2012).
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