РЕШЕНИЕ ЗАДАЧИ НА ОПРЕДЕЛЕНИЕ СРЕДНЕГО РАЗМЕРА ЧАСТИЦ КОЛЛОИДНОГО РАСТВОРА В MSEXCEL И VBA

Душкевич О.Г.

Белорусский государственный университет, г. Минск

Курс «Основы информационных технологий» химического факультета БГУ завершается постановкой ряда прикладных задач [1, 2], решая которые, студенты закрепляют свои знания и умения, полученные на предыдущих занятиях. В качестве программных средств для их решения выбирается табличный процессор MSExcel и встроенная система программирования VBA.

Одним из наиболее интересных примеров такого рода является задача на определение среднего размера частиц коллоидного раствора.

Постановка задачи. В результате химического синтеза образуется коллоидный раствор, причем по данным электронной микроскопии форма полученных частиц близка к сферической, а их распределение по размерам подчиняется логарифмическому нормальному закону:

$$f(r) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-\frac{(\ln(r) - m)^2}{2\sigma^2}),$$

где r – радиус частиц, σ – величина дисперсии, m – параметр.

Решение. Средний размер частиц может быть найден, как отношение двух несобственных интегралов:

$$\overline{M} = \frac{\int_0^{+\infty} rf(r)dr}{\int_0^{+\infty} f(r)dr}$$
(1)

Для нахождения величины несобственного интеграла на листе Excel строится расчетная схема следующего вида:

Ячейки E2, E3 содержат начальные данные задачи. В ячейке E4 набираем формулу подынтегральной функции. В строках 6 и 7 строим две последовательности чисел, стремящихся к нижнему (0) и верхнему ($+\infty$) пределам интегрирования.

В строке 9 последовательно находим значения определенных интегралов с пределами интегрирования из соответствующих ячеек строк 6 и 7. Процесс вычисления заканчивается, когда относительная разность двух последних интегралов (Н9, I9) становится меньше 0,000001 (I11). В результате величина последнего определенного интеграла (I9) помещается в ячейку E12, как приближенное значение несобственного интеграла.

												-
	A	B	C	D	E	F	G	Н		J	К	
		Б ПЕЦЦИ	E CDE I		ADATED	AUACT				ACTRO	D A	
1	ОПЕЕД	ETERI	Е СГЕД	HEI OF	ASMEE	A HACI	иц кол	лонді		ACIDO	Γ Α	
2	Дисперсия			0,5								
3	Параметр			1,7			Найти интеграл					
4	Распределение частиц по размерам			4,4E-38			Пайтий	перал				
5	Пределы интегрирования											
6	1	0,5	0,25	0,125	0,0625	0,03125	0,015625	0,0078125	0,0039063	0,0019531		
7	1	2	4	8	16	32	64	128	256	512		
8	Значения определенных интегралов											
9		0,037051	0,805025	3,734955	5,892858	6,195221	6,202736	6,202767	6,202767			
10	Относительная разность											
11			20,72735	3,639552	0,577759	0,05131	0,001213	4,98E-06	3,23E-09			
12	Значение несобственного интеграла				6,202767							
13												
14	Интеграл в числителе			49,40223								
15	Интеграл в знаменателе			6,202767								
16	6 Средний размер частиц				7,9645							

Нахождение интегралов и их относительных разностей, контроль за завершением вычислений и вывод результата в ячейку Е12 выполняет макрос «Задача № 4». Для его запуска на листе Excel строится командная кнопка «Найти интеграл» (H3:I4).

```
Sub 3agayaN4()

Range("9:9").Clear: Range("11:11").Clear: Cells(12, 5) = ""

For i = 2 To 100

If Cells(6, i) = "" Or Cells(7, i) = "" Then _

Cells(12, 5) = Cells(9, i - 1): Exit For

t = Integral(Cells(6, i), Cells(6, i - 1)) + Integral(Cells(7, i - 1), Cells(7, i))

Cells(9, i) = Cells(9, i - 1) + t

If Cells(9, i - 1) <> 0 Then Cells(11, i) = t / Cells(9, i - 1)

If Cells(11, i) > 0 And Cells(11, i) < 0.000001 Then _

Cells(12, 5) = Cells(9, i): Exit For

Next i

EndSub
```

Для вычисления определенных интегралов используется подпрограммафункция «Integral», реализующая метод средних прямоугольников.

Function Integral(ByVal Lpoint, ByVal Rpoint)
h = (Rpoint - Lpoint) / 100 : Cells(4, 6).Value = Lpoint + h / 2 : s = 0
For i = 1 To 100
s = s + Cells(4, 5).Value : Cells(4, 6).Value = Cells(4, 6).Value + h
Next i
Integral = s * h
End Function
Найдя значения несобственных интегралов из формулы (1), помещаем
их в ячейки Е14, Е15 и вычисляем отношение (Е16), являющееся решением

Литература

задачи.

1. Скатецкий, В. Г. Математические методы в химии / В.Г. Скатецкий, Д.В. Свиридов, В.И. Яшкин. – Минск: ТетраСистемс, 2006. – 368 с. 2. Эберт, К. Компьютеры: применение в химии / К. Эберт, Х. Эдде-рер. – М: Мир, 1988. – 416 с.