УДК 517.955

Л о м о в ц е в Ф. Е. Задачи Коши для гиперболических дифференциально-операторных уравнений четных порядков с переменными областями определения разрывных коэффициентов // Доклады НАН Беларуси. 2002. Т. 46. № 4. С. 43–47.

Доказана корректная сильная разрешимость задач Коши

$$\left(\frac{d^2}{dt^2} + A_m(t) \right) \mathbf{L} \left(\frac{d^2}{dt^2} + A_1(t) \right) u(t) = f(t), t \in \left[0, T \right],$$

$$\left(\frac{d^i u}{dt^i} \right|_{t=0} = \mathbf{j}_i \in H, 0 \le i \le 2m-1, m = 1, 2, ...,$$

где линейные положительные самосопряженные различные, но сравнимые, операторы $A_k(t)$ в гильбертовом пространстве H с зависящими от t областями определения негладки и разрывны по t, а их ограниченные обратные $A_k^{-1}(t)$ имеют в H локально по t ограниченные сильные регулярные производные $\left(A_k^{-1}(t)\right)^{(i)}, i=1,2$, что локально по t при $\forall g,v \in H$

$$-\left(\left(A_{k}^{-1}(t)\right)^{\!(1)}g,g\right)_{\!H} \leq c_{k}^{(1)}\left(A_{k}^{-1}(t)g,g\right)_{\!H}, \quad \left|\left(\left(A_{k}^{-1}(t)\right)^{\!(2)}g,v\right)_{\!H}\right| \leq c_{k}^{(2)}\left|g\right|_{\!H}\left(A_{k}^{-1}(t)v,v\right)_{\!H}^{\!1/2}.$$

Библиогр. 6 назв.

Ф. Е. ЛОМОВЦЕВ

ЗАДАЧИ КОШИ ДЛЯ ГИПЕРБОЛИЧЕСКИХ ДИФФЕРЕНЦИАЛЬНО-ОПЕРАТОРНЫХ УРАВНЕНИЙ ЧЕТНЫХ ПОРЯДКОВ С ПЕРЕМЕННЫМИ ОБЛАСТЯМИ ОПРЕДЕЛЕНИЯ РАЗРЫВНЫХ КОЭФФИЦИЕНТОВ

(Представлено академиком И.В. Гайшуном)

Задачи Коши для гиперболических дифференциально-операторных (г. д.-о.) уравнений четных порядков с постоянными областями определения операторных коэффициентов исследованы в [1]. Задачи Коши для г. д.-о. уравнений четных порядков с переменными областями определения гладких операторных коэффициентов изучались в [2]. В случае негладких и разрывных операторных коэффициентов эти задачи изучены только для уравнений второго порядка [3,4].

1. Постановка задач. Пусть H — гильбертово пространство (г.п.) со скалярным произведением (\cdot,\cdot) и нормой $|\cdot|$. На ограниченном интервале]0,T[рассматриваются задачи Коши (3.K.)

$$\mathbf{L}_{m}(t)u = \left(d^{2} / dt^{2} + A_{m}(t)\right)\mathbf{L}\left(d^{2} / dt^{2} + A_{1}(t)\right)u = f, t \in \left[0, T\right], \tag{1}$$

$$\mathbf{1}_{j}u \equiv d^{j}u/dt^{j}\Big|_{t=0} = \mathbf{j}_{j} \in H, 0 \le j \le 2m-1, m=1,2,...,$$
 (2)

где u и f — функции переменной t со значениями в H , $A_k(t), t \in q$, — линейные самосопряженные положительные операторы в H с зависящими от t областями определения $D(A_k(t))$ и q — некоторое множество полной меры из $\begin{bmatrix} 0,T \end{bmatrix}$ с t=0 $\in q$.

Предполагается, что операторы $A_k(t)$ удовлетворяют следующим условиям.

- I. Операторы $A_k(t), t \in q$, являются сужениями на $D(A_k(t))$ линейных операторов $A_k(t)$ в H с кусочно-постоянными по t областями определения $D(A_k(t))$.
- II. Области определения $D(A_k^m(t))$ степеней $A_k^m(t), 1 \le k \le m$, плотны в H;
 эквивалентны нормы: $\left|A_s(t)u\right| \sim \left|A_k(t)u\right| \sim \left|A_s(t)u A_k(t)u\right| \forall u \in D(A_k(t)), t \in q, 1 \le s \ne k \le m$; $\left|A_s(t)A_k(t)u A_k(t)A_s(t)u\right|_{a(t)} \le c_{s,k} \left|u\right|_{(a+3)(t)} \forall u \in W^{a+4}(t), t \in q, a \le 2m-4, s \ne k, c_{s,k} \ge 0$, где гильбертовы пространства (г.п.) $W^a(t)$ области определения $D(A_1^{a/2}(t))$ степеней $A_1^{a/2}(t)$, наделенные эрмитовыми нормами $\left|v\right|_{a(t)} = \left|A_1^{a/2}(t)v\right|, a \le 2m$, и $W^0(t) = H$.
 - III. Интервал $]0,T[\;\;$ разбит на взаимно непересекающиеся интервалы $I_r=]t_r,t_{r+1}[\;,$

 $r=\overline{0,R}$, $t_0=0,t_{R+1}=T$, так, что на $\forall I_r$ существуют сильные регулярные производные [5] $d^iA_k^{-1}(t)/dt^i\in L_\infty(I_r,\mathcal{L}(H)), i=1,2, \quad \text{удовлетворяющие при почти всех} \quad t\in I_r\cap q \quad \text{неравенствам}$

$$-\left((dA_k^{-1}(t)/dt)g, g \right) \le c_k^{(1)} \left(A_k^{-1}(t)g, g \right) \forall g \in H, c_k^{(1)} \ge 0,$$

$$\left| \left((d^2 A_k^{-1}(t)/dt^2)g, v \right) \right| \le c_k^{(2)} \left| g \right| \left(A_k^{-1}(t)v, v \right)^{1/2} \forall g, v \in H, c_k^{(2)} \ge 0, 1 \le k \le m.$$
(3)

IV. На $\forall I_r$ существуют не зависящие от t банаховы пространства (б. п.) V_r^{2i} , $0 \le i \le m$, такие, что $V_r^0 = H; V_r^2 \supset D(A_k^0(t)); V_r^{2j} \subset V_r^{2i}, j > i; W^{2i}(t) \subset V_r^{2i}, t \in q, 0 \le i \le m;$ и существуют сильные регулярные производные $d^i A_k^0(t) / dt^i \in L_\infty(I_r, \mathcal{L}\left(V_r^{2[j/2]+2}, V_r^{2[j/2]}\right)),$ $0 \le j \le 2m-2-i, 0 \le i \le 2m-2$, где $[\cdot]$ – целая часть числа.

Согласно [2], условий I-IV достаточно для существования (единственных) локальных сильных решений ЗК для уравнений (1) на каждом I_r в отдельности. Чтобы из этих локальных сильных решений можно было склеивать глобальные сильные решения ЗК (1), (2) нужны дополнительные условия согласования. Предполагается, что в неусранимых точках разрывов [3] и негладкости t_r , $r = \overline{1,R}$, операторов $A_k(t)$ выполняются следующие условия согласования.

V. Для каждых двух соседних интервалов I_{r-1} и I_r

а) в их общей граничной точке t_r пересечения областей определения $D(A_1^{3m/2}(t_r-0)) \cap D(A_1^{3m/2}(t_r+0))$ степеней $A_1^{3m/2}(t_r-0)$ и $A_1^{3m/2}(t_r+0)$ плотны в $W^{2m-1}(t_r-0), r=\overline{1,R}$, и $\left|A_1^{m-1/2}(t_r+0)u\right|^2 \leq c_1 \left|A_1^{m-1/2}(t_r-0)u\right|^2 \ \forall u \in W^{2m-1}(t_r-0), r=\overline{1,R}, c_1 \geq 1, \tag{4}$

где $A_{\rm l}^{a/2}(t_r-0)$ и $A_{\rm l}^{a/2}(t_r+0)$ —односторонние продолжения слева и справа операторов $A_{\rm l}^{a/2}(t)$;

- b) на левом интервале I_{r-1} неравенства (3) имеют место со знаком абсолютной величины в их левых частях:

Докажем корректную сильную разрешимость ЗК (1), (2), которыми в приложениях являются, в частности, смешанные задачи для гиперболических факторизованных

дифференциальных уравнений с высшими порядками производных по временной переменной и переменными порядками частных производных по пространственным переменным [6].

2. Теорема существования и единственности. Сначала введем пространства и дадим определение сильных решений. Обозначим символами \mathcal{H}^a г.п. $L_2\left(\left]0,T\right[,W^a(t)\right),a\leq 2m,$ $\mathcal{H}^0=\mathcal{H}.$ За пространства сильных решений ЗК (1),(2) возьмем б.п. E^m — пополнения множеств $D(L_m)=\{u\in D(\mathcal{U}_m):d^su/dt^s\in L_\infty\left(\left]0,T\right[,W^{2m-2\left[(s+1)/2\right]}(t)\right)\cap\mathcal{H},\ 0\leq s\leq 2m,r=\overline{0,R}\}$, где $D(\mathcal{U}_m)=\{u\in\mathcal{H}:d^su/dt^s\in L_2\left(I_r,V_r^{2m-2\left[(s+1)/2\right]}\right),0\leq s\leq 2m,r=\overline{0,R}\}$

$$\frac{d^{2m-2}u}{dt^{2m-2}}, \quad \frac{d^{a_1} \mathcal{A}_{k_1}^{\bullet}(t)}{dt^{a_1}} \mathbf{L} \frac{d^{a_p} \mathcal{A}_{k_p}^{\bullet}(t)}{dt^{a_p}} \frac{d^{2m-2p-2-|a(p)|}u}{dt^{2m-2p-2-|a(p)|}} \in L_2(I_r, W^2(t)),$$

$$0 \le |a(p)| \le 2m - 2p - 2, 1 \le p \le m - 1, 1 \le k_1, ..., k_p \le m, k_i \ne k_j, r = \overline{0, R} \},$$

 $\left[\cdot
ight]$ – целая часть числа, $a\left(p\right) = \left(a_{_{\!\!1}},...,a_{_{\!\!p}}\right) \in Z_{_{\!\!+}}^{_{\!\!p}}$ и $\left|a\left(p\right)\right| = a_{_{\!\!1}} + ... + a_{_{\!\!p}}$, по нормам

$$\|u\|_{m} = \left\{ ess \sup_{0 < t < T} \sum_{i=0}^{2m-1} \left| \frac{d^{i}u(t)}{dt^{i}} \right|_{(2m-1-i)(t)}^{2} \right\}^{1/2}.$$

Для правых частей уравнений (1) и начальных условий (2) возьмем г.п. $F^m = \mathcal{H} \times W^{2m-1}(0) \times \mathbf{L}$ $\times H$ — множества всех элементов $\mathfrak{I} = \{f.j_0,....j_{2m-1}\} \in F^m$ с эрмитовыми нормами

$$\left\langle \left\| \Im \right\| \right\rangle_{m} = \left\{ \int_{0}^{T} \left| f(t) \right|^{2} dt + \sum_{j=0}^{2m-1} \left| j_{j} \right|_{(2m-1-j)(0)}^{2} \right\}^{1/2}.$$

3K (1), (2) соответствуют линейные неограниченные операторы $L_m = \{ \mathbf{L}_m(t), \mathbf{l}_0, ..., \mathbf{l}_{2m-1} \}$: $E^m \supset D(L_m) \to F^m$. Если выполняются условия I, IV и $D(L_m)$ плотны в \mathcal{H} , то операторы L_m допускают замыкания $\overline{L_m} \equiv \{ \overline{\mathbf{L}}_m(t), \mathbf{l}_0, ..., \mathbf{l}_{2m-1} \}$ с областями определения $D(\overline{L_m})$. Решения операторных уравнений $\overline{L_m} u = \Im, \Im \in F^m$, называются сильными решениями (с. р.) 3K (1), (2). Корректную сильную разрешимость 3K (1), (2) дает следующая

Теорем а 1. Пусть выполняются условия I-V. Если существует сильная регулярная производная $dA^{-1}(t)/dt \in L_{\infty}(I_r, \mathcal{L}\big(H,W^{2m-1}(t)\big)), r = \overline{0,R}$, обратных $A^{-1}(t) \in L_{\infty}(\big]0, T\big[,\mathcal{L}(H))$ операторов $A(t) = A_1^m(t)$ при m > 1 и $D(L_m)$ плотны в \mathcal{H} , то для каждых $f \in \mathcal{H}$ и $j_j \in W^{2m-1-j}(0), 0 \le j \le 2m-1$, существует единственное c.p. $u \in E^m$ 3K (1), (2), что

$$||u||_{m}^{2} = c_{0}(m) \langle ||\mathfrak{I}|| \rangle_{m}^{2}, \mathfrak{I} = \{f, j_{0}, ..., j_{2m-1}\} \in F^{m}, c_{0}(m) > 0, m = 1, 2,$$
 (5)

Доказательство. По теореме 1 из [2] для $\forall u \in D(\overline{L_{m,1}})$ имеем неравенства

$$ess \sup_{t_0 < t < t_1} \sum_{i=0}^{2m-1} \left| \frac{d^i u}{dt^i} \right|_{(2m-1-i)(t)}^2 \le c_2 e^{c_3(t_1-t_0)} \left\{ \int_{t_0}^{t_1} \left| \overline{\mathbf{L}}_m(t) u \right|^2 dt + \sum_{j=0}^{2m-1} \left| \mathbf{l}_j u \right|_{(2m-1-j)(0)}^2 \right\}, c_2, c_3 > 0, \quad (6)$$

где $D(\overline{L_{m,1}})$ получаются из $D(\overline{L_m})$ заменой]0,T[на $]t_0,t_1[$. По теореме 2 из [2] для $\forall f_1=f\in L_2(I_0,H), \forall j_j\in W^{2m-1-j}(0)$ \exists с.р. $u_1\in E_1^m$ уравнений $\overline{L_{m,1}}u=\mathfrak{I}_1=\{f_1,j_0,...,j_{2m-1}\}\in F_1^m$, где нормы б. п. E_1^m и F_1^m определяются левой и правой частями (6). По теореме 1 из [2] для $\forall u\in D(\overline{L_{m,2}})$

$$ess \sup_{t_1 < t < t_2} \sum_{i=0}^{2m-1} \left| \frac{d^i u}{dt^i} \right|_{(2m-1-i)(t)}^2 \le c_2 e^{c_3(t_2-t_1)} \left\{ \int_{t_1}^{t_2} \left| \overline{\mathbf{L}}_m(t) u \right|^2 dt + \sum_{j=0}^{2m-1} \left| \frac{d^j u(t_1)}{dt^j} \right|_{(2m-1-j)(t_1+0)}^2 \right\}, \tag{7}$$

где $D(\overline{L_{m,2}})$ получаются из $D(\overline{L_{m}})$ заменой]0,T[на $]t_1,t_2[$.По теореме 2 из [2] в силу (4) для $\forall f_2=f\in L_2(I_1,H), j_{-j,2}=d^{-j}u_1(t_1)/dt^{-j}\in W^{2m-1-j}(t_1+0)$ \exists с.р. $u_2\in E_2^m$ уравнений $\overline{L_{m,2}}u=\mathfrak{Z}_2=\{f_2,j_{-0,2},...,j_{-2m-1,2}\}\in F_2^m$, где нормы б. п. E_2^m и F_2^m определяются левой и правой частями (7). Сложим (6) и (7), правую часть в (7) оценим сначала с помощью (4), а потом правой частью из (6) и получим функцию $u_{1,2}\in E_{1,2}^m$, равную u_r на $I_{r-1},r=1,2,$ и удовлетворяющую неравенствам

$$ess \sup_{t_0 < t < t_2} \sum_{i=0}^{2m-1} \left| \frac{d^i u}{dt^i} \right|_{(2m-1-i)(t)}^2 \le c_2 \left(c_1 c_2 + 1 \right) e^{c_3 (t_2 - t_0)} \left\{ \int_{t_0}^{t_2} \left| \overline{\mathbf{L}}_m(t) u \right|^2 dt + \sum_{j=0}^{2m-1} \left| \mathbf{l}_j u \right|_{(2m-1-j)(0)}^2 \right\} . \tag{8}$$

Функция $u_{1,2}$ будет с.р. уравнений $\overline{L_{m,1,2}}u=\mathfrak{I}_{1,2}=\left\{f.j_{0},....j_{2m-1}\right\}\in F_{1,2}^{m}$, если $\exists~u_{1,2}^{(n)}\in D(L_{m,1,2})$, что $u_{1,2}^{(n)}\to u_{1,2}$ в $E_{1,2}^{m}$ и $L_{m,1,2}u_{1,2}^{(n)}\to \mathfrak{I}_{1,2}$ в $F_{1,2}^{m}$ при $n\to\infty$. Нормы б. п. $E_{1,2}^{m}$ и $F_{1,2}^{m}$ определяются левой и правой частями (8), а $D(L_{m,1,2})$ — из $D(L_{m})$ заменой $\left]0,T\right[$ на $\left]t_{0},t_{2}\right[$.

Используя V b), для $\forall u \in D(\overline{L_{m,1}})$ выводятся неравенства

$$ess \sup_{t_0 < t < t_1} \sum_{i=0}^{2m-1} \left| \frac{d^i u}{dt^i} \right|_{(2m-1-i)(t)}^2 \le c_2 e^{c_3(t_1-t_0)} \left\{ \int_{t_0}^{t_1} \left| \overline{\mathbf{L}}_m(t) u \right|^2 dt + \sum_{j=0}^{2m-1} \left| \frac{d^j u(t_1)}{dt^j} \right|_{(2m-1-j)(t_1-0)}^2 \right\}. \tag{9}$$

Функция u_1 – единственное c. p. 3К с обратным временем на $\begin{bmatrix} t_0,t_1 \end{bmatrix}$ для f_1 и $j_{j,1}=j_{j,2}\in W^{2m-1-j}(t_1-0)$.В силу $\overline{L_2\left(I_0,W^m(t)\right)}=L_2\left(I_0,H\right)$ $\exists f_1^{(n)}\in L_2\left(I_0,W^m(t)\right)$, что $f_1^{(n)}\to f_1$ в $L_2\left(I_0,H\right)$, и в силу V а) $\exists j_{j,1}^{(n)}\in D(A_1^{3m/2}(t_1-0))$ \mathbf{I} $D(A_1^{3m/2}(t_1+0),$ что $J_{j,1}^{(n)}\to J_{j,1}$ в $W^{2m-1-j}(t_1-0)$ при $n\to\infty$.

Теорема 2. Если выполняются I-IV, $dA^{-1}(t)/dt \in L_{\infty}(I_{r-1}, \mathcal{L}\big(H, W^{2m-1}(t)\big)), r = \overline{1, R+1},$ при m>1 и $D(L_m)$ плотны в \mathcal{H}_r , то для каждых $f_r \in \mathcal{H}_r$ и $\mathbf{j}_{j,r} \in W^{2m-1-j}(t_{r-1}+0), 0 \leq j \leq 2m-1$, существует единственное $c.\ p.\ u \in E_r^m$ 3K для уравнений (1) на I_{r-1} со свойствами $d^iu/dt^i \in \mathcal{H}_r^{2m-i}, 0 \leq i \leq 2m$.

Пространства \mathcal{H}^a_r и E^m_r получаются из пространств \mathcal{H}^a и E^m заменой]0,T[на $]t_r,t_{r+1}[$.

По этой теореме, которая вытекает из теоремы 4 в [3], ЗК с обратным временем на $[t_0,t_1]$ для $f_1^{(n)}$ и $j_{j,1}^{(n)}$ имеют с. р. $u_1^{(n)}\in D(L_{m,1})$, благодаря Vc). Из (9) видно, что $u_1^{(n)}\to u_1$ в E_1^m , когда $f_1^{(n)}\to f_1$ в $L_2(I_0,H)$ и $j_{j,1}^{(n)}\to j_{j,1}$ в $W^{2m-1-j}(t_1-0)$ при $n\to\infty$. По теореме 2 для $f_2^{(n)}\in L_2(I_1,W^m(t))$ и $j_{j,2}^{(n)}=j_{j,1}^{(n)}$ ЗК на $[t_1,t_2]$ имеют с.р. $u_2^{(n)}\in D(L_{m,2})$, благодаря Vc). Из (7) видно, что $u_2^{(n)}\to u_2$ в E_2^m , когда $f_2^{(n)}\to f_2$ в $L_2(I_1,H)$ и $j_{j,2}^{(n)}\to j_{j,2}$ в $W^{2m-1-j}(t_1+0)$ при $n\to\infty$. Пусть $u_{1,2}^{(n)}=u_{r}^{(n)}$ на $I_{r-1},r=1,2$, так как из (8) следует, что $u_{1,2}^{(n)}\to u_{1,2}$ в $E_{1,2}^m$, когда $L_{m,1,2}u_{1,2}^{(n)}\to \mathfrak{I}_{1,2}$ в $F_{1,2}^m$ при $n\to\infty$.

По теоремам 1 и 2 из [2] для $f \in L_2(I_2, H)$ и $j_{j,3} = d^j u_2(t_2)/dt^j \in W^{2m-1-j}(t_2+0)$ $\exists u_3 \in E_{1,3}^m$ — с.р. 3К на $\begin{bmatrix} t_2, t_3 \end{bmatrix}$. Функция $u_{1,3}$, равная u_r на $I_{r-1}, r=1,2,3$, будет с.р. на $\begin{bmatrix} t_0, t_3 \end{bmatrix}$, если $\exists u_{1,3}^{(n)} \in D(L_{m,1,3})$, что $u_{1,3}^{(n)} \to u_{1,3}$ в $E_{1,3}^m$ и $L_{m,1,3}u_{1,3}^{(n)} \to \mathfrak{I}_{1,3} = \{f,j_0,...,j_{2m-1}\}$ в $F_{1,3}^m$ при $n \to \infty$. Нормы б. п. $E_{1,3}^m$ и $F_{1,3}^m$ определяются левой и правой частями неравенств $\Big(\forall u \in D(\overline{L_{m,1,3}})\Big)$

$$ess \sup_{t_0 < t < t_3} \sum_{i=0}^{2m-1} \left| \frac{d^i u}{dt^i} \right|_{(2m-1-i)(t)}^2 \le c_2 \left(c_1 c_2 + 1 \right)^2 e^{c_3(t_3 - t_0)} \left\{ \int_{t_0}^{t_3} \left| \overline{\mathbf{L}}_m(t) u \right|^2 dt + \sum_{j=0}^{2m-1} \left| \mathbf{l}_j u \right|_{(2m-1-j)(0)}^2 \right\}, \quad (10)$$

а $D(L_{m,1,3})$ получаются из $D(L_m)$ заменой]0,T[на $]t_0,t_3[$. Аналогично на $]t_1,t_3[$ \exists $u_{2,3}^{(n)}\in D(L_{m,2,3}),$ что $u_{2,3}^{(n)}\to u_{1,3}$ в $E_{2,3}^m$, $\mathbf{L}_m(t)u_{2,3}^{(n)}\to f$ в $L_2(]t_1,t_3[$,H) и $d^ju_{2,3}^{(n)}(t_1)/dt^j\to d^ju_2(t_1)/dt^j$ в $W^{2m-1-j}(t_1+0)$ при $n\to\infty$, где $E_{2,3}^m$, $E_{2,3}^m$ и $D(L_{m,2,3})$ определяются аналогично $E_{1,2}^m$, $E_{1,2}^m$ и $D(L_{m,1,2})$. Тогда $u_{1,3}^{(n)}=q_n^-u_{1,2}^{(n)}+q_n^+u_{2,3}^{(n)}\in D(L_{m,1,3})$ при всех больших n, где $q_n^-(t)+q_n^+(t)=1$ для

 $\forall t \in R, \quad q_n^+(t) = n \int_R w \Big(n(t-s) \Big) \, C(s) ds, \quad w \in C^{\infty}(R), \quad w \ge 0, \quad w(t) = 0 \quad \text{при} \quad \left| t \right| > 1, \quad \int_I w(t) dt = 1,$ $C(t) = 0 \quad \text{при} \quad t < \overline{t} = t_1 + (t_2 - t_1) / 2 \quad \text{и} \quad C(t) = 1 \quad \text{при} \quad t \ge \overline{t} \, .$

Из оценок $\left|d^iq_n^+(t)/dt^i\right| \le c_4n^i$, $t \in R, i \le 2m, c_4 \ne c_4(n), c_4 > 0$, при всех больших n

$$\int_{t_0}^{t_3} \left| \mathbf{L}_m(t) u_{1,3}^{(n)} - f \right|^2 dt \le 3 \int_{t_0}^{t_2} \left| \mathbf{L}_m(t) u_{1,2}^{(n)} - f \right|^2 dt + 3 \int_{t_1}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_2}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_2}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_2}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_2}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2 dt + 3 \int_{t_3}^{t_3} \left| \mathbf{L}_m(t) u_{2,3}^{(n)} - f \right|^2$$

$$4c_4^2c_5n^{2m-1}\left(\left\|u_{1,2}^{(n)}-u_{1,3}\right\|_{E_{1,2}^m}^2+\left\|u_{2,3}^{(n)}-u_{1,3}\right\|_{E_{2,3}^m}^2\right),c_5\neq c_5(n),c_5>0,$$

где $\|\cdot\|_{E_{1,2}^m}$ и $\|\cdot\|_{E_{2,3}^m}$ — нормы б. п. $E_{1,2}^m$ и $E_{2,3}^m$. Отсюда $\mathbf{L}_m(t)u_{1,3}^{(n)} \to f$ в $L_2(]t_0,t_3[$, H) и, следовательно, из (10) $u_{1,3}^{(n)} \to u_{1,3}$ в $E_{1,3}^m$ при $n \to \infty$ и т. д. В итоге, для $\forall f \in \mathcal{H}$ и $\forall j_j \in W^{2m-1-j}(0), 0 \le j \le 2m-1$, $\exists u \in E^m$ — с. р. $\exists K$ (1), (2), равное u_r на $I_{r-1}, r = \overline{1,r+1}$, удовлетворяющее неравенствам (5) при $c_0(m) = c_2(c_1c_2+1)^R \exp(c_3T)$.

3 а м е ч а н и е. Методом продолжения по параметру утверждение теоремы1 (возможно, с большими $c_0(m)$) распространяются на уравнения с младшими частями

$$\mathbf{L}_{m}(t)u + \sum_{k=0}^{2m-1} B_{k}(t) \frac{d^{k}u}{dt^{k}} = f, \quad t \in \left]0, T\right[, \quad m = 1, 2, \dots,$$

если $B_k(t) \in L_{\infty}(]0,T[,\mathcal{L}(W^{2m-1-k}(t),H)), 0 \le k \le 2m-1.$

Литература

- 1. Радыно Я. В., Юрчук Н. И. // Дифференц. уравнения. 1976. Т. 12, № 2. С. 311-342.
- 2. Ломовцев Ф. Е. // Вестн. Белорус. ун-та. Сер. 1.
- 3. Ломовцев Ф. Е. . // Дифференц уравнения. 1997. Т. 33, № 10. С. 1394-1403.
- 4. Ломовцев Ф. Е. // Докл. НАН Беларуси. 2001. Т. 45, № 3. С. 37-40.
- 5. Ломовцев Ф. Е. // Дифференц. уравнения. 1995. Т. 31, № 7. С. 1132-1141.
- 6. Л о м о в ц е в Ф. Е. // Понтрягинские чтения XII: Тез. Докл. Воронежской весенней математической школы . 2001. С. 102-103.

Белорусский государственный университет

Поступило 5.04.01 г.

РЕЗЮМЕ

Доказана корректная сильная разрешимость задач Коши для гиперболических факторизованных дифференциальных уравнений четных порядков с переменными областями определения негладких и разрывных операторных коэффициентов.