INTERSECTION OF CONJUGATED SOLVABLE SUBGROUPS IN A SYMMETRIC GROUP

Anton Baykalov

Новосибирский государственный университет, 630090 Новосибирск, Россия Институт математики им. С.Л. Соболева, СО РАН, 630090 Новосибирск, Россия anton188@bk.ru

Assume that a finite group G acts on a set Ω . An element $x \in \Omega$ is called a G-regular point if |xG| = |G|, i.e. if the stabilizer of x is trivial. Define the action of the group G on Ω^k by the rule

$$g:(i_1,\ldots,i_k)\mapsto (i_1g,\ldots,i_kg).$$

If G acts faithfully and transitively on Ω , then the minimal number k such that the set Ω^k contains a G-regular point is called the *base size* of G and is denoted by b(G). For a positive integer m the number of G-regular orbits on Ω^m is denoted by Reg(G,m) (this number equals 0 if m < b(G)). If H is a subgroup of G and G acts by the right multiplication on the set Ω of right cosets of H then G/H_G acts faithfully and transitively on the set Ω . (Here $H_G = \bigcap_{g \in G} H^g$.) In this case, we denote $b(G/H_G)$ and $Reg(G/H_G,m)$ by $b_H(G)$ and $Reg_H(G,m)$ respectively.

Thus $b_H(G)$ is the minimal number k such that there exist elements $x_1, \ldots, x_k \in G$ for which $H^{x_1} \cap \ldots \cap H^{x_k} = H_G$.

Consider the problem 17.41 from "Kourovka notebook" [1]:

Let H be a solvable subgroup of finite group G and G does not contain nontrivial normal solvable subgroups. Are there always exist five subgroups conjugated with H such that their intersection is trivial?

The problem is reduced to the case then G is almost simple in [2]. Specifically, it is proved that if for each almost simple group G and solvable subgroup H of G condition $Reg_H(G, 5) \ge 5$ holds then for each finite nonsolvable group G and solvable subgroup H of G condition $Reg_H(G, 5) \ge 5$ holds.

We have proved the following theorem

Theorem 1. Let H be a solvable subgroup of an almost simple group G whose socle is isomorphic to A_n , $n \geq 5$. Then $Reg_H(G, 5) \geq 5$. In particular $b_H(G) \leq 5$.

References

- 1. Kourovka notebook. Edition 18. Novosibirsk, 2014.
- 2. Vdovin E.P. On the base size of a transitive group with solvable point stabilizer // Journal of Algebra and Application. 2012. Vol. 11. No. 1. 1250015 (14 pages).