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We consider the complexity results for the Clustering Minimum Biclique Completion
problem restricted to subclasses of bipartite graphs.

A finite undirected graph G = (V,E) is bipartite if its vertex set V can be partitioned into
two sets X,Y ⊆ V (partite sets) such that every edge of G has its ends in different sets X,Y .
For a vertex v ∈ V , the set of vertices of the graph G adjacent to v is denoted by NG(v).
Let G = (X ∪ Y,E) be an arbitrary bipartite graph with non-empty partite sets X,Y and let
p be a positive integer such that p ≤ |X|. If we add all edges of the set E = {{x, y} : x ∈
X, y ∈ Y, {x, y} /∈ E} to the graph G, we obtain a complete bipartite graph G′ = (X ∪ Y,E ∪
E) whose the partite sets X can be partitioned into p non-empty sets X1, X2, . . . , Xp with the
following condition: NG′(x) = NG′(x′) for every pair of vertices x, x′ ∈ Xi, i ∈ {1, 2, . . . , p}. The
Clustering Minimum Biclique Completion problem asks for a minimum cardinality set
E′ ⊆ E to be added to the graph G so that the partite set X of the resulting bipartite graph
G′ = (X ∪ Y,E ∪ E′) can be partitioned into p non-empty sets X1, X2, . . . , Xp with the same
condition. Let ξp(G) = |E′|. The decision version of the problem can be stated as follows:

Clustering Minimum Biclique Completion
Instance: A bipartite graph G = (X ∪ Y,E) with non-empty parts X and Y , two positive

integers p ≤ |X| and k.
Question: Can G be transformed by adding at most k additional edges connecting vertices

from different sets X,Y into a bipartite graph G′ whose the partite set X can be partitioned
into p non-empty sets X1, . . . , Xp such that NG′(x) = NG′(x′) for any two vertices x, x′ ∈ Xi,
i ∈ {1, 2, . . . , p}? Equivalently, is ξp(G) ≤ k?

This problem, also known as the Multicast Partition problem, has been introduced by
N. Faure [1, 2] and arises in telecommunication network technologies [2]. The computational
complexity of the Clustering Minimum Biclique Completion problem for various subclasses
of bipartite graphs is little-studied. To the best of our knowledge, there is only two results. N.
Faure et. al. in [2] showed that: (a) the problem is NP -complete for fixed p = 2 (by a reduction
from the Maximum Edge Biclique problem) and (b) the problem restricted to bipartite graphs
G = (X ∪ Y,E) with degrees of vertices of Y at most 1 can be solved in strongly polynomial
time by a dynamic programming algorithm. On the other hand, the problem is well-studied from
a mathematical programming point of view [3–6].

We provide several well-studied subclasses of bipartite graphs, for which the considered problem
remains NP -complete. Recall that a graph G is H-free if G does not contain an isomorphic copy
of the graph H as an induced subgraph.

Theorem 1. Clustering Minimum Biclique Completion for P4-free bipartite graphs is
NP -complete.

Corollary 1. Clustering Minimum Biclique Completion is NP -complete for the follow-
ing subclasses of bipartite graphs (for definitions we refer to [7, 8]): bipartite permutation graphs,
convex graphs and chordal bipartite graphs.

A bipartite graph G = (X ∪ Y,E) is (3, 2)-regular if the degree of every vertex of X is 3 and
the degree of every vertex of Y is 2.

Theorem 2. Clustering Minimum Biclique Completion for C4-free (3, 2)-regular bipar-
tite graphs and p = 2 is NP -complete.



On the positive side, ξp(G) for 2K2-free bipartite graphs G = (X ∪ Y,E) can be computed in
O(|X|4|Y |p) time.

This work was supported by Belarusian Republican Foundation for Fundamental Research
(project F14RA-004).

References
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