## ON GROUPS OF PERIOD 12

## D.V. Lytkina<sup>1</sup>, V.D. Mazurov<sup>2</sup>

<sup>1</sup>Siberian State University of telecommunications and Information Sciencies 86 Kirova str., 630102, Novosibirsk, Russia daria.lytkin@gmail.com

<sup>2</sup>Sobolev Institute of Mathematics

4 Koptjug Av., 630090, Novosibirsk, Russia mazurov@math.nsc.ru

We consider groups of period 12. In particular, we give a criterion for such groups to be locally finite.

It is well known that groups of period 4 and groups of period 6 are locally finite [1–4]. Local finiteness of groups of period 12 with some additional conditions has been proved in [1, 5–7].

We reduce a question of local finiteness of groups of period 12 to a question of finiteness of their subgroups generated by three elements of order 3. Our main result is as follows.

**Theorem.** A group of period 12 is locally finite iff every subgroup H of G is finite, given that one of the following conditions is true.

- (1) H is generated by and element a of order 3 and elements b and c of order 2, such that  $(ab)^3 = (bc)^3 = 1$ .
- (2) H is generated by elements a and b of order 3 and an element c of order 2, such that  $(ac)^2 = 1$ .

For the proof of the theorem we first prove that the following results are true.

**Lemma 1.** If G is a finite group of period 12 and  $p \in \{2,3\}$ , then the p-length of G is at most two, and that bound is exact. If besides the 2-length of the group G equals 2 and the 2-length of every proper subgroup of G is less than two, then G is isomorphic to either  $S_4$ , or the semidirect product of a non-cyclic group of order 4 by the group  $B = \langle a, x \mid a^3 = x^4 = 1, a^x = a^{-1} \rangle$ . In particular, G contains a subgroup isomorphic to  $A_4$ .

**Lemma 2.** If G is a localy finite group of period 12, then

$$G = O_{2,3,2,3,2}(G) = O_{3,2,3,2,3}(G).$$

The proof of the theorem also uses computations with the help of GAP [8]. A good example is given by

**Lemma 3.** Suppose that G is a group of period 12 generated by an element a of order 3 and involutions b, c, such that  $(ab)^3 = (bc)^3 = 1$ . Then G is a semidirect product of the subgroup  $H = \langle (bc)^G \rangle$  coinciding with its derived subgroup, and a group  $A = \langle a, b \rangle$  isomorphic to  $A_4$ . The subgroup H is generated by elements  $x_1 = bc$ ,  $x_2 = x_1^a$ ,  $x_3 = x_2^a$ ,  $x_4 = x_2^b$ ,  $x_5 = x_3^b$ ,  $x_6 = x_5^a$ , and the action of A on H is defined by the following equalities:

$$x_1^a = x_2, x_2^a = x_3, x_3^a = x_1, x_4^a = x_5^{-1}, x_5^a = x_6, x_6^a = x_4;$$
 (1)

$$x_1^b = x_1^{-1}, x_2^b = x_4, x_3^b = x_5, x_4^b = x_2, x_5^b = x_3, x_6^b = x_6^{-1}.$$
 (2)

Proof of Lemma 3. Computations in GAP [8] show that in the group

$$K = \langle a, b, c \mid 1 = a^3 = b^2 = c^2 = (ab)^3 = (abc)^3 = (ac)^{12} = (abc)^{12} \rangle$$

the subgroup  $H = \langle (bc)^K \rangle$  coincides with its derived subgroup, and  $K/H \simeq A_4$ . It is clear that G is a homomorphic image of K, and the kernel of the corresponding homomorphism lies in H. The equality  $x_1^b = x_1^{-1}$  follows from the fact that b and c are involutions and  $x_1 = bc$ . Other equalities from (1) and (2) follow from the definitions of elements  $x_i$ ,  $i = 1, \ldots, 6$ , and defining relations of the group A.

The work of the first author was supported by RFBR, project 13-01-00505, the work of the second author was supported by RFBR, project 14-01-90013.

## References

- 1. Sanov I.N. Solution of Burnside's problem for exponent 4 (in Russian) // Leningrad State University Annals (Uchenye Zapiski) Math. Ser. 1940. No. 55. P. 166–170.
  - 2. Hall M. Solution of the Burnside problem for exponent six // Illinois J. Math. 1958. V. 2. P. 764–786.
- 3. Newman M.F. Groups of exponent six // Computational group theory (Durham, 1982), London: Academic Press. 1984. P. 39–41.
- 4. Lysenok I.G. Proof of a theorem of M. Hall concerning the finiteness of the groups B(m,6) // Math. Notes. 1987. V. 41. No. 3. P. 241–244.
- 5. Mamontov A.S. Groups of exponent 12 without elements of order 12 // Siberian Mathematical Journal. 2013. V. 54, No. 1. P. 114–118.
- 6. Lytkina D.V., Mazurov V.D., Mamontov A.S. On local finiteness of some groups of period 12 // Siberian Mathematical Journal. 2012. V. 53, No. 6. P. 1105–1109.
- 7. Mazurov V.D., Mamontov A.S. Involutions in groups of exponent 12 // Algebra and Logic. 2013. V. 52, No. 1. P. 67–71.
  - 8. GAP: Groups, algorithms, and programming, http://www.gap-system.org.