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A hereditary graph class is a set of simple graphs closed under isomorphism and deletion of
vertices. It is well-known that each hereditary class X can be defined by a set of forbidden induced
subgraphs Y, written X = Free(Y). If a hereditary class can be defined by a finite set of forbidden
induced fragments, then it is called finitely defined. For example, the sets of line graphs and
bounded degree graphs are finitely defined, but the sets of planar graphs and bipartite graphs do
not.

Given an algorithmic graph problem, the problem of its complexity classification in the family
of hereditary classes is of our attention. How to classify hereditary graph classes with respect
to the complexity of a given problem? The first natural idea coming to mind is to consider
phase transition between easy and hard hereditary classes under some definitions of easiness and
hardness. It is like determining critical temperatures, when ice melts to water or water turns to
steam. We know that the answer is zero and one hundred degrees Celsius, respectively. The phase-
transition approach seams to be unsuccessful. For a given NP-complete graph problem II, natural
definitions of easy and hard instances are the following. A hereditary class is II-easy if II can be
solved for its graphs in polynomial time. If IT is NP-complete for a hereditary class, then it is said
to be II-hard. In fact, these notions were introduced in the paper of V.E. Alekseev [1]|, where the
absence of maximal easy classes was also proved for any NP-complete graph problem. Minimal
hard classes may exist or may not exist. It is easy to prove that the set of all complete graphs is
a minimal hard case for the travelling salesman problem. The following result was proved in [2].

Theorem 1. For each k, there are no minimal hard classes for the vertex and edge k-colorability
problems.

So, minimal hard classes could be called critical, as they play a specific role in the analysis of
the computational complexity. But, they may be absent at all. In other words, both sets of easy
and hard classes can be open with respect to the inclusion relation. That is why we consider the
phase-transition approach to be useless.

To solve the major problem, we have to take into account the fact of the existence of infinite
monotonically decreasing chains of hard classes. Intuitively, the limits of such kind sequences have
a special role in the analysis of computational complexity. It is really true. This leads to the
notion of a boundary class. A class X is II-limit if there is an infinite monotonically decreasing

chain X1 O Xy O ... of II-hard classes such that X = [ X;. A minimal II-limit class is said to

=1
be II-boundary. This notion was introduced by V.E. Alekseev [1]|, who also proved the following
theorem certifying its significance.

Theorem 2. A finitely defined class is II-hard if and only if it contains a II-boundary class.

By the theorem, if the set of all II-boundary classes, called the II-boundary system, is known,
then, for the problem II, we have a complete complexity dichotomy in the family of finitely defined
classes. Moreover, any NP-complete graph problem has boundary classes. One more corollary is
the fact that there are no finitely defined classes with an intermediate complexity, i.e. different
from polynomial-time solvability and NP-completeness.



Assuming P # NP, one boundary class is known for the independent set problem [1], four
boundary classes are known for the dominating set problem [3,4], two boundary classes are known
for the Hamiltonian cycle problem [5]. Unfortunately, for all of the mentioned problems, there is
no a complete description of a boundary system. Only one result of this type exists [6]. An idea
arises that obtaining a complete description of the boundary system of a given graph problem
may be a problem impossible to solve, because the structure of the answer is too complex. This
is certified by the following result [5,7].

Theorem 3. For each k > 2, the boundary systems for the vertex and edge k-colorability
problems have the continuum cardinality.

Sometimes, a known subset of a boundary system is enough to obtain a complexity dichotomy
for some simple subfamily of the hereditary graph classes family. This idea really works sometimes.
There is a dichotomy for the independent set problem within the family of classes defined by
induced subgraphs with at most five vertices. Similar results exist for one forbidden induced
structure for the dominating set problem [8] and the coloring problem [9]. There are some dichotomies
for the vertex 3- and 4-colorability problems and one small forbidden induced structure [10,11].
There exist dichotomies for the vertex and edge 3-colorability problems and several small forbidden
induced fragments [12,13].

The talk will be devoted to the results above and some other results in the theory of critical
hereditary graph classes.
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