ON AUTOMORPHISMS OF THE ENDOMORPHISM SEMIGROUP OF A FREE ABELIAN DIMONOID

Yurii V. Zhuchok

Kyiv National Taras Shevchenko University 64 Volodymyrska str., 01601, Kyiv, Ukraine zhuchok_y@mail.ru

An algebra (D, \dashv, \vdash) with two binary associative operations \dashv and \vdash is called a *dimonoid* [1] if for all $x, y, z \in D$ the following conditions hold:

$$(x\dashv y)\dashv z = x\dashv (y\vdash z), \ (x\vdash y)\dashv z = x\vdash (y\dashv z), \ (x\dashv y)\vdash z = x\vdash (y\vdash z).$$

A dimonoid (D, \dashv, \vdash) will be called *abelian* (in the same as a digroup in [2]) if $x \dashv y = y \vdash x$ for all $x, y \in D$. For example, any left zero and right zero dimonoid is abelian. More general information on dimonoids and examples of different dimonoids can be found, e.g., in [1–3].

Let X be a nonempty set and FCm(X) be the free commutative monoid on X with the unity ε . We put $FAd(X) = X \times FCm(X)$ and define two binary operations \dashv and \vdash on FAd(X) by

$$(x, u) \dashv (y, v) = (x, uyv), \ (x, u) \vdash (y, v) = (y, xuv).$$

Theorem 1. The algebra $\mathfrak{F}_X = (FAd(X), \dashv, \vdash)$ is the free abelian dimonoid of rank |X|.

We denote by \mathfrak{F}_n the free abelian dimonoid \mathfrak{F}_X on an *n*-element set X.

Let (S, \circ) be an arbitrary semigroup and $a \in S$. Define on S a new binary operation \circ_a by $x \circ_a y = x \circ a \circ y$ for all $x, y \in S$. Clearly, (S, \circ_a) is a semigroup, it is called a *variant* of (S, \circ) .

Corollary 1. The free abelian dimonoid \mathfrak{F}_1 is isomorphic to the variant $(N^0, +_1)$ of the additive semigroup of all nonnegative integers.

Proposition 1. The endomorphism monoid $End(\mathfrak{F}_1)$ of the free abelian dimonoid \mathfrak{F}_1 is isomorphic to the semigroup (N^0, \star) , where $x \star y = x + y + x \cdot y$ for all $x, y \in N^0$.

Denote by \mathbb{P} the set of all prime numbers.

Proposition 2. Let X be a singleton set, Y be an arbitrary set and $End(\mathfrak{F}_X) \cong End(\mathfrak{F}_Y)$. Then |Y| = 1 and the isomorphisms of $End(\mathfrak{F}_X)$ onto $End(\mathfrak{F}_Y)$ are in a natural one-to-one correspondence with permutations of \mathbb{P} .

From here it follows that the automorphism group $Aut(End(\mathfrak{F}_1))$ of the endomorphism monoid $End(\mathfrak{F}_1)$ is isomorphic to the symmetric group $S(\mathbb{P})$ on a countably infinite set \mathbb{P} .

Theorem 2. Let $(x, \varepsilon), (y, \omega) \in FAd(X)$, where $w = w_1^{\alpha_1} w_2^{\alpha_2} \dots w_n^{\alpha_n} \neq \varepsilon$. Every isomorphism $End(\mathfrak{F}_X) \to End(\mathfrak{F}_Y)$ is induced by the isomorphism $\pi_{\varphi} : \mathfrak{F}_X \to \mathfrak{F}_Y$ such that

$$(x,\varepsilon)\pi_{\varphi} = (x\varphi,\varepsilon), \ (y,\omega)\pi_{\varphi} = (y\varphi,(w_1\varphi)^{\alpha_1}(w_2\varphi)^{\alpha_2}\dots(w_n\varphi)^{\alpha_n}),$$

where $\varphi: X \to Y$ is a uniquely determined bijection.

Corollary 2. For an arbitrary set X with $|X| \ge 2$, the automorphism group $Aut(End(\mathfrak{F}_X))$ is isomorphic to the symmetric group S(X).

We observe that the automorphism group of the endomorphism monoid of a free semigroup or a free monoid was described by Mashevitsky G. and Schein B.M. [4].

References

1. Loday J.-L. Dialgebras, in: Dialgebras and related operads. Lect. Notes Math., Springer-Verlag. 2001. V. 1763. P. 7–66.

2. Felipe R. Generalized Loday algebras and digroups // Comunicaciones del CIMAT. 2004. No. I-04-01/21-01-2004.

3. Zhuchok A.V. Free dimonoids // Ukr. Math. J. 2011. V. 63. No. 2. P. 196–208.

4. Mashevitsky G., Schein B.M. Automorphism of the endomorphism semigroup of a free monoid or a free semigroup // Proceedings of the AMS. 2003. V. 131. No. 6. P. 1655–1660.