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Conic bundles over real formal power
series field

(OFFPRINT)





Algebra and Discrete Mathematics RESEARCH ARTICLE
Number 1. (2004). pp. 1 – 16

c© Journal “Algebra and Discrete Mathematics”

Conic bundles over real formal power series field

Dzmitry F. Bazyleu, Sergey V. Tikhonov, and

Vyacheslav I. Yanchevskĭı

Abstract. We examine some properties of conic bundle ra-
tional surface over real formal power series field. We focus on the
following problem: When does a conic bundle with prescribed de-
generation data exist? We study also an algebraic counterpart of
this problem (algebras, defined over a purely transcendental func-
tion field in one variable over real formal power series field).

1. Introduction

The main aim of the paper is to examine existence of conic bundle rational
surfaces with prescribed degeneration data over real formal power series
field. Let us first define the main object under consideration (see [1], [4],
[5], [7], [8], [9], [12] for details).

Definition 1. [5] A a conic bundle rational surface over a field K is a
smooth, projective, geometrically integral K-variety X admitting a dom-
inant K-morphism ϕ : X → P1

K whose generic fiber Xη isomorphic to a
smooth conic.

Such a fibration degenerates at a finite number of closed points yi ∈
P1, and each degenerate fiber consists of a pair of smooth rational curves
transversally intersecting at one point [8], [9]. Assume that ϕ is relatively
minimal, i.e. no degenerate fiber can be blown down. Then each compo-
nent of such a fiber is defined over a quadratic extension Li of the residue
field K(yi).
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2 Conic bundles

Definition 2. Let ϕ : X → P1
K be a relatively minimal conic bundle sur-

face. The set of local invariants is defined as the collection of quadratic
extensions {Li/K(yi)}, where yi ∈ P1 are closed points at which ϕ degen-
erates, K(yi) is the residue field of yi, and Li is the field of definition of
the components of the degenerate fiber at yi.

We would like to describe X in terms of this local information. The
first question is existence:

Question A. Given a finite set {K(yi), Li}, where yi ∈ P1 is a closed
point and Li is a quadratic extension of K(yi), does there exist a
(relatively minimal) conic bundle ϕ : X → P1

K with local invariants
{K(yi), Li}?

A natural obstruction to a positive answer to Question A becomes
evident as soon as this question is translated into the language of quater-
nion algebras. Indeed, let Q denote a quaternion algebra over F = K(x)
corresponding to the generic fiber of X. Then Q ramifies precisely at
the yi’s, and its ramification at yi can be identified with a nonzero ele-
ment of K(yi)

∗/(K(yi)
∗)2 which, in turn, corresponds to some quadratic

extension Li/K(yi). More precisely, we have

Definition 3. Let F = K(x). Let A be a central simple F -algebra, and
let y ∈ P1

K be a closed point. The ramification of A at y is the element
∂y(A) ∈ H1(Ày, Q/Z), where Ày= Gal(K/K(y)) and ∂y : Br(F ) →
H1(Ày, Q/Z) is the ramification map [15, Ch.II, App., §3]. We call the
pair (y, ∂y(A)) with nonzero ∂y(A) a local invariant of A.

We need the following

Proposition 1. ([8], [9], [4])

(i) There is a one-to-one correspondence between classes of birational
(fiber-preserving) isomorphism of relatively minimal conic bundles
ϕ : X → P1

K and isomorphism classes of quaternion algebras over
F = K(x);

(ii) Let y ∈ P1
K be a closed point. There is a one-to-one correspondence

between the following data:

• collection of quadratic and trivial extensions of K(y);

• H1(Ày, Z/2);

• K(y)∗/(K(y)∗)2.

(iii) There is a one-to-one correspondence between closed points of P1
K

and discrete valuations of K(x) trivial on K.
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We thus get a one-to-one correspondence between the set of local
invariants of a conic bundle ϕ : X → P1

K and the set of local invariants
of the corresponding quaternion algebra.

Local invariants cannot take arbitrary values, but must satisfy the
Faddeev reciprocity law.

Proposition 2. ([6], [15, Ch. II, App., §5]) There is an exact sequence

0 → 2Br(K) → 2Br(F )
⊕∂y−→

⊕

y∈P1
K

H1(K(y), Z/2)
cor−→ H1(K, Z/2) → 0

(here y runs over closed points of P1
K , H1(L, ·) is a shortening for

H1(Gal(L/L), ·), and cor is the sum of corestriction homomorphisms).

Thus the sum of corestrictions of the values of local invariants must
be 0, in order for us to have a positive answer to Question A.

Question A can be rephrased in terms of quaternion algebras:

Question B. Given a finite collection {yi, di}, where yi ∈ P1 is a closed
point, di ∈ K(yi)

∗/(K(yi)
∗)2, satisfying the Faddeev reciprocity law, does

there exist a quaternion algebra Q over F = K(x) which ramifies only at
the yi’s, such that the residue of Q at yi equals di for each i?

We call an element of
⊕

y∈P1
K

H1(K(y), Z/2) a system of invariants.

For a finite collection {yi, di}, where yi ∈ P1 is a closed point and di ∈
K(yi)

∗/(K(yi)
∗)2, there exists a corresponding element

φ ∈
⊕

y∈P1
K

H1(K(y), Z/2).

The collection {yi, di} satisfies the Faddeev reciprocity law if φ ∈ ker(cor).
Note that Faddeev’s reciprocity law shows that if the finite local in-

variants of two algebras are the same, then their local invariants at infinity
are also the same. More generally, if A1 and A2 agree at all but one closed
rational point of ramification, then they agree at that point.

Furthermore, if A has local invariants of order 2, then A⊗2 has no
nontrivial local invariants, and thus A⊗2 is isomorphic to some constant
algebra B⊗K F. Any central simple algebra of exponent 2 gives rise to its
system of local invariants. Conversely by [6], there exists a central simple
algebra A over F with local invariants {yi, di}, and A is determined
uniquely up to tensor multiplication by a constant algebra (i.e. algebra
coming from a K-algebra). We can always choose A to have exponent 2
using classical results of Auslander–Brumer, Fein–Schacher and Rosset–
Tate. In this way, we see that any system of local invariants corresponds
to algebras of exponent 2.
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Definition 4. We call a collection {yi, di} good if it is realizable as the
system of local invariants of a quaternion algebra, and bad otherwise.

Our fundamental question of which systems are good leads us to the
following concept.

Definition 5. Let K be a field, F = K(x). We call central simple F -
algebras A and B Faddeev equivalent if there is a K-algebra C such that
A is Brauer equivalent to B ⊗K C. We define the Faddeev index of A as
the minimum of indices of algebras Faddeev equivalent to A.

Thus the Faddeev index of an algebra A of exponent 2 equals 2 if and
only if the collection of local invariants of A is good.

Problem C. Compute the Faddeev index of any given A.

Although Problem C seems to be out of reach for general K, for some
fields the situation looks more optimistic. Namely, if K is a nondyadic p-
adic field (= a finite extension of Qp, p 6= 2), the main result of Saltman’s
paper [14] gives a bound for the number of symbols in the Merkurjev–
Suslin decomposition. If [K : Qp] < ∞, by [14, Th. 3.4], any K(x)-
algebra A of prime exponent different from p is similar to the product of
at most two cyclic algebras. Moreover, the appendix to [14] contains an
example (due to Jacob and Tignol) showing that this estimate is sharp:
The Jacob–Tignol algebra has exponent 2 and index 4.

Very little known when an algebra is Faddeev equivalent to a quater-
nion algebra in the case of a general field. The following result was
appeared in ([10]) in a slightly different form.

Theorem 1. Let A/K(x) be a central simple algebra of exponent 2, then
A is Faddeev equivalent to a quaternion algebra, i.e. the corresponding
system of local invariants is good, in the following cases of sets of rami-
fication points

• two linear polynomials;

• a linear polynomial and the infinite point;

• an irreducible quadratic polynomial;

• three linear polynomials;

• two linear polynomials and the infinite point;

• a linear polynomial and an irreducible quadratic polynomial;

• an irreducible quadratic polynomial and the infinite point.
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Note that the latter result depends only on the set of ramification
points but not on the types of ramification. If the degrees of ramification
points or the cardinality of the set of ramification points is bigger then 3,
no any other general results are known. The aim of the paper is to present
some results on existence of conic bundles with prescribed degeneration
data in terms of systems of good local invariants in cases of real formal
power series field R((t)).

In Section 2 we consider the algebraic counterpart of the above ge-
ometric problems. We prove the existence of a quaternion algebra with
ramification at one or two polynomials which are sums of squares in
R((t))[x].

In Section 3 we consider also the application of our results to the
investigation of the Pfister conjecture about u-invariants of fields.

Below we fix the following notations and conventions. For an Abelian
group A, the kernel of the multiplication by 2 is denoted by 2A. If R is a
commutative ring, R∗ denotes the group of units in R, and R∗2 denotes
the subgroup of squares in R∗. If s ∈ R∗, then for the brevity the class
sR∗2 will be denoted by the same symbol s.

We denote by Br(L) the Brauer group of a field L. For central simple
L-algebras A,B the equivalence A ∼ B will mean [A] = [B] in Br(L)
(here [A] is the element of Br(L) corresponding to A); and we shall write
A ∼ 1 if [A] is zero in Br(L). A quaternion L-algebra corresponding to a
pair a, b ∈ L∗ is denoted by (a, b).

Let L be a field with a discrete valuation v. Then the ramification
of a quaternion L-algebra (a, b) at v is defined by the square root of the
residue of (−1)v(a)v(b)av(b)/bv(a).

Let K(x) be a pure transcendental extension of degree 1 over field
K of zero characteristic. Recall the structure of discrete valuations of
F = K(x) trivial on K. Any such a valuation is of the following form.
If it corresponds to a finite closed point y of P1

K , then there exists an
irreducible monic polynomial f(x) ∈ K[x] such that the valuation vf

with f(x) as a uniformizer coincides with the valuation corresponding to
y. The valuation corresponding to the infinite point is v∞ with t−1 as a
uniformizer.

The completions of K(x) with respect to vf and v∞ are of the form
K(θ)((f(x))) and K((t−1)), respectively; here θ is a root of f(x), and the
embedding K(x) ↪→ K(θ)((f(x))) sends t to some series t̃ such that

t̃ ≡ θ (mod f(x)).

For an algebra A/F by Af , A∞ we shall denote algebras A ⊗K Ff ,
A⊗K F∞, where Ff (respectively F∞) is the completion of F with respect
to vf (respectively v∞).
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Let f(x), g(x) ∈ K[x], f irreducible and not dividing g(x). Then the
ramification of (g(x), f(x)) at f is K(θ)(

√

g(θ))/K(θ), where θ is a root
of f(x).

Let A be a central simple R((t))(x)-algebra of exponent 2 and f ∈
R((t))[x] is a sum of squares. Note that the residue field of the valuation
vf is C(( m

√
t)) for some m. Since C(( m

√
t))∗/(C(( m

√
t))∗)2 = {1, m

√
t},

then either A has no ramification at f or the ramification is uniquely
defined.

2. Algebras over R((t)) with special ramification

Let R((t)) be the field of real formal power series. In this section we
present an algebraic counterpart of the above geometric problem. We
shall prove the existence of a quaternion algebra with ramification at one
or two polynomials which are sums of squares in R((t))[x].

We shall need the following computational

Lemma 1. Let f, g be relatively prime monic irreducible polynomials over
R((t)) which are sums of squares, and α, β respectively roots of f and
g. Let also R((t))(α) = C(( m

√
t)), R((t))(β) = C(( n

√
t)), where m, n ∈ N.

Then a quaternion R((t))(x)-algebra (f, g) is either trivial or ramified
only at polynomials f, g.

Proof. Let L = R((t))(α, β), then L = C(( k
√

t)), where k = lcm(m, n).
Indeed, let m = dm1, n = dn1, where d = gcd(m, n), then k = dm1n1.
Since m|k, n|k, we have

R((t))(α, β) = C((t))(
m
√

t,
n
√

t) ⊂ C((t))(
k
√

t) = C((
k
√

t)).

There are a, b ∈ Z such that an+ bm = d. Hence a/m+ b/n = d/(mn) =
1/k. Thus k

√
t = ( m

√
t)a( n

√
t)b, therefore

L = C((t))(
k
√

t) ⊂ C((t))(
m
√

t,
n
√

t) = R((t))(α, β).

Hence C(( k
√

t)) = L.
Let τ be the complex conjugation, σ an automorphism of L trivial on

C such that σ( k
√

t) = εk
k
√

t, where εk is a primitive k-th root of unity.
Note that σm|R((t))(α) = id, σn|R((t))(β) = id. Indeed,

(
n
√

t)σn

= ((
k
√

t)m1)σn

= ((
k
√

t)σn

)m1 = (εn
k

k
√

t)m1 = εnm1
k (

k
√

t)m1 =
n
√

t.

Since ( n
√

t)σn

= n
√

t, σn|C = id, then σn|R((t))(β) = id. In a similar way
we obtain σm|R((t))(α) = id. We shall show that

{σ, σ2, . . . , σk, τσ, . . . , , τσ2, τσk}
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is the set of pairwise different automorphisms of L over R((t)). If 1 ≤
i < j ≤ k, then

(
k
√

t)σi

= εi
k

k
√

t 6= εj
k

k
√

t = (
k
√

t)σj

,

(
k
√

t)τσi

= ((
k
√

t)σi

)τ = (εi
k

k
√

t)τ = ε−i
k

k
√

t 6=

ε−j
k

k
√

t = (εj
k

k
√

t)τ = ((
k
√

t)σj

)τ = (
k
√

t)τσj

.

Besides, if 1 ≤ i ≤ k, 1 ≤ j ≤ k, we have

(
√
−1)τσi

= ((
√
−1)σi

)τ = (
√
−1)τ = −

√
−1 6=

√
−1 = (

√
−1)σj

.

Hence f(x) =
∏m

i=1((x−ασi

)(x−ατσi

)), g(x) =
∏n

j=1((x− βσj

)(x−
βτσj

)).
We have also that τσi = σk−iτ for all i ∈ Z. Indeed,

τσi(
√
−1) = −

√
−1 = σk−iτ(

√
−1),

τσi(
k
√

t) = τ(εi
k

k
√

t) = ε−i
k

k
√

t = εk−i
k

k
√

t = σk−i(
k
√

t) = σk−iτ(
k
√

t).

Note that for any l, r ∈ Z

vL(β − ασdl+r

) = vL(β − ασr

), vL(β − ατσdl+r

) = vL(β − ατσr

),

where vL is the valuation of L extending the valuation of R((t)). Indeed,

vL(β − ασdl+r

) = vL((β − ασdl+r

)σ−nla

) = vL(β(σn)−la − ασr+l(d−na)
)

= vL(β − ασr+bml

) = vL(β − (α(σm)bl

)σr

) = vL(β − ασr

),

vL(β − ατσdl+r

) = vL((β − ατσdl+r

)σ−nla

)

= vL(β(σn)−la − ατσr+l(d−na)
) = vL(β − ατσr+bml

) = vL(β − ασk−r−mblτ )

= vL(β − (α(σm)−bl

)σk−rτ ) = vL(β − ασk−rτ ) = vL(β − ατσr

).

Then

vL(f(β)) = vL(
m
∏

i=1

((β − ασi

)(β − ατσi

)))

= vL(

m1−1
∏

j=0

d
∏

r=1

((β − ασdj+r

)(β − ατσdj+r

)))

= vL(

m1−1
∏

j=0

d
∏

r=1

((β − ασr

)(β − ατσr

)))
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= vL((
d

∏

r=1

((β − ασdj+r

)(β − ατσdj+r

)))m1)

= m1vL(
d

∏

r=1

((β − ασr

)(β − ατσr

))).

In a similar way we obtain that

vL(g(β)) = n1vL(
d

∏

r=1

((α − βσr

)(α − βτσr

))).

Since

vL(α − βτσr

) = vL((α − βτσr

)τσr

) = vL(ατσr − βτ(σrτ)σr

)

= vL(ατσr − βτ(τσk−r

)σr

) = vL(ατσr − βτ2σk

)

= vL(ατσr − β) = vL(β − ατσr

)

and
vL(α − βσr

) = vL((α − βσr

)σk−r

) = vL(ασk−r − β)

= vL(β − ασk−r

) = vL(β − ασdm1n1−r

)

= vL(β − ασd(m1n1−1)+(d−r)
) = vL(β − ασd−r

),

we have

vL(
d

∏

r=1

((α − βσr

)(α − βτσr

))) = vL(
d

∏

r=1

((β − ασd−r

)(β − ατσr

))) =

vL(
d

∏

r=1

((β − ασr

)(β − ατσr

))).

Hence
vL(g(α))

n1
=

vL(f(β))

m1
.

Let Γ, Γm, Γn be groups of values respectively of valuations of fields
L, C(( m

√
t)), C(( n

√
t)) extending the valuation of R((t)). Then

Γ =
1

n1
Γm =

1

m1
Γn.

The algebra (f, g) has ramification at f ⇐⇒ g(α) 6∈ (C(( m
√

t))∗)2 ⇐⇒
vL(g(α)) 6∈ 2Γm ⇐⇒ vL(g(α)) 6∈ 2n1Γ ⇐⇒ vL(f(β)) 6∈ 2m1Γ ⇐⇒ f(β) 6∈
(C(( n

√
t))∗)2 ⇐⇒ the algebra (f, g) has ramification at g.
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Note that R((t))(x)∞ is a Pythagorean field, i.e. any sum of squares
from R((t))(x)∞ is a square. Then f ∈ (R((t))(x)∗∞)2 since f is a sum of
squares. Hence (f, g)∞ ∼ 1. Thus if the algebra (f, g) has no ramification
at f and g, then it is trivial.

Lemma 2. Let f0 be a monic irreducible over R((t)) polynomial which
is a sum of two squares in R((t))[x], deg f0 > 0. Then there exist
f1, . . . , fn ∈ R((t))[x], n ∈ N such that

1) the algebra (f0, f1) ⊗ (f1, f2) ⊗ · · · ⊗ (fn−1, fn) is ramified only at
f0;

2) fn = t or fn is an irreducible polynomial of positive degree such
that R((t))(θn) is a real field, where θn is a root of fn;

3) f0, . . . , fn−1 are irreducible over R((t)) polynomials which are sums
of two squares in R((t))[x];

4) deg f0 > deg f1 > · · · > deg fn;

5) the algebras (f0, f1), (f1, f2), . . . , (fn−1, fn) are nontrivial;

6) if 0 ≤ i < j − 1 ≤ n − 1, then the algebra (fi, fj) is trivial.

Proof. Let θ0 be a root of f0. Since f0 is a sum of squares over R((t)),
then R((t))(θ) = C(( m

√
t)) for some m ∈ N. Recall that the ramification

at f0 is defined by any nonsquare element from C(( m
√

t)).

There is a polynomial f ∈ R((t))[x] such that f(θ0) 6∈ (C(( m
√

t))∗)2,
deg f < deg f0. Among all such polynomials f choose a polynomial of the
minimal degree and denote it by f1. Note that f1 is irreducible. Indeed,
if f1 = g1g2, where g1, g2 ∈ R((t))[x], deg g1 > 0, deg g2 > 0, then g1(θ) 6∈
(C(( m

√
t))∗)2 or g2(θ) 6∈ (C(( m

√
t))∗)2 since f1(θ) 6∈ (C(( m

√
t))∗)2. Hence

we have a contradiction with a choice of polynomial f1 of minimal degree
since deg gi < deg f1. Thus f1 is irreducible.

Moreover, (f0, f1)∞ ∼ 1 by an argument analogous to that in the
proof of Lemma 1.

Firstly assume that deg f1 = 0. Since R((t))∗/(R((t))∗)2 = {±1,±t}
and (f0,−1) ∼ 1, (f0, a

2) ∼ 1 for any a ∈ R((t)∗, then one can obtain
that f1 = t. Thus if deg f1 = 0, then the algebra (f0, f1) is ramified only
at f0.

Now assume that deg f1 > 0. Let θ1 be a root of the polynomial f1.
Consider the case, where R((t))(θ1) is real. Since R((t))(θ1) is real and
f0 is a sum of squares, then f0(θ1) ∈ (R((t))(θ1)

∗)2. Hence the algebra
(f0, f1) is not ramified at f1. Moreover, the latter algebra is not ramified
at the infinite point by an argument analogous to that above. Hence the
algebra (f0, f1) is ramified only at f0.

If R((t))(θ1) is nonreal, then f1 is a sum of squares. Hence by Lemma
1 the algebra (f0, f1) is ramified at f0 and f1. Since R(θ1) is nonreal,
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then deg f1 ≥ 2. In the same way one can find an irreducible polynomial
f2 ∈ K[x] of minimal degree such that f2(θ1) 6∈ (R((t))(θ1)

∗)2. Note that
deg f2 < deg f1.

If R((t))(θ2) is real, where θ2 is a root of polynomial f2, then the
algebra (f0, f1) ⊗ (f1, f2) ramifies only at f0. If R((t))(θ2) is nonreal,
then we can find a polynomial f3 ∈ R((t))[x] of the minimal degree
such that f3(θ2) 6∈ (R((t))(θ2)

∗)2, deg f3 < deg f2 and so on. Since
deg fi+1 < deg fi, then finally we shall obtain that either deg fn = 0 or
the field R((t))(θn) is real, where θn is a root of fn. Then the algebra

(f0, f1) ⊗ (f1, f2) ⊗ · · · ⊗ (fn−1, fn)

ramifies only at f0.
Now we shall show that the polynomials f1, . . . , fn satisfy to condi-

tion 2)...6). Properties 2)...5) are obvious from the construction of the
polynomials fi. Let us check the latter property. Consider the algebra
(fi, fj), where i+1 < j < n. Since fi+1 is the polynomial of the minimal
degree such that fi+1(θi) 6∈ (R((t))(θi)

∗)2, then fj(θi) ∈ (R((t))(θi)
∗)2.

Hence the algebra (fi, fj) is not ramified at fi. Then by Lemma 1 the
latter algebra also is not ramified at fj . In view of (fi, fj)∞ ∼ 1 one has
that (fi, fj) ∼ 1.

Now it is possible to prove the main results.

Theorem 2. Let f ∈ R((t))[x] be a monic irreducible polynomial which
is a sum of two squares, deg f > 0. Then there exists a quaternion algebra
with ramification at f only.

Proof. By Lemma 2 there exist polynomials h1, . . . , hn such that the al-
gebra

A = (f, h1) ⊗ · · · ⊗ (hn−1, hn)

has ramification only at f . Set h0 = 1.
Let

B =

{

(f
∏(n−1)/2

i=0 h2i,
∏(n+1)/2

i=1 h2i−1) if n ≡ 1(mod 2);

(f
∏n/2

i=0 h2i,
∏n/2

i=1 h2i−1) if n ≡ 0(mod 2).

Then A is Faddeev equivalent to B. Indeed, let us consider the case
where n is odd. We shall compute the ramification of B. The algebra B
is not ramified outside {f , h1, . . . , hn} and the infinite point.

Since (f, hi) ∼ 1 for i > 1, then B is ramified at f . Now consider the
ramification at h2i, 1 ≤ i ≤ (n−1)/2. Note that by Lemma 2 (h2i, hj) ∼ 1
if j 6= 2i± 1. Moreover, the algebra (h2i, h2i−1h2i+1) has no ramification
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at h2i. Hence B is not ramified at h2i. Analogously, B is not ramified at
h2i−1, 1 ≤ i ≤ (n−1)/2. Finally, since by Lemma 2 (f, hn) and (h2i, hn),
1 ≤ i ≤ (n − 1)/2, have no ramification at hn, then B is not ramified at
hn. Thus B and A have the same ramification at finite points. Hence
by the reciprocity law, B has no ramification at the infinite point. This
shows that B has ramification only at f .

The case where n is even can be treated in a similar way.

Theorem 3. Let f1, f2 ∈ K[x] be monic irreducible polynomials which
are sums of two squares, deg f1, deg f2 > 0. Then there exists a quaternion
algebra with ramification only at f1 and f2.

Proof. By Lemma 2 there exist polynomials g1, . . . , gn, h1, . . . , hn such
that the algebras

A1 = (f1, h1) ⊗ · · · ⊗ (gn−1, gn),

A2 = (f, h1) ⊗ · · · ⊗ (hn−1, hn)

have ramification respectively only at f1 and f2. Set g0 = h0 = 1.

Firstly, consider the case where (f1, f2) 6∼ 1. By Lemma 1 the latter
quaternion algebra is ramified at f1 and f2.

Let (f1, f2) ∼ 1. Assume that there exists k < n such that (f2, gk) 6∼
1. Among all such k choose the minimal one. Then the algebra

(f1, g1) ⊗ (g1, g2) ⊗ · · · ⊗ (gk−1, gk)

is ramified only at f2 and gk. Moreover, for any j < k the algebra (f2, gj)
is trivial. By an analogous argument as in the proof of Theorem 2 one
can prove that the algebra

B =

{

(f1f2
∏(k−1)/2

i=0 g2i,
∏(k+1)/2

i=1 g2i−1) if k ≡ 1(mod 2);

(f1
∏k/2

i=0 g2i, f2
∏k/2

i=1 g2i−1) if k ≡ 0(mod 2)

has ramification only at f1 and f2.

In the same way one can obtain that if there is l < m such that
(f1, hl) 6∼ 1, then there exists a quaternion algebra with ramification
only at f1 and f2.

Further we shall consider the case where (f2, gk) ∼ 1, (f1, hl) ∼ 1 for
any k < n, l < m.

Assume that there are k < n, l < m such that (gk, hl) 6∼ 1. Among all
such pairs choose such that (gi, hl) ∼ 1 for any i < k and (gk, hj) ∼ 1 for
any j < l.
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The algebra

(f1, g1) ⊗ (g1, g2) ⊗ · · · ⊗ (gk−1, gk)

is ramified only at points f1, gk and the algebra

(f2, h1) ⊗ (h1, h2) ⊗ · · · ⊗ (hl−1, hl)

is ramified only at points f2, hl. Moreover, (f1, hj) ∼ 1 for any j < l,
(f2, gi) ∼ 1 for any i < k. Then one can prove that the algebra

B =























































(f1
∏(k−1)/2

i=0 g2i
∏(l+1)/2

j=1 h2j−1, f2
∏(k+1)/2

i=1 g2i−1
∏(l−1)/2

j=0 h2j)

if k ≡ 1(mod 2), l ≡ 1(mod 2);

(f1
∏k/2

i=0 g2iF2
∏(l−1)/2

j=0 h2j ,
∏k/2

i=1 g2i−1
∏(l+1)/2

i=1 h2j−1)

if k ≡ 0(mod 2), l ≡ 1(mod 2);

(f1
∏(k−1)/2

i=0 g2iF2
∏l/2

j=0 h2j ,
∏(k+1)/2

i=1 g2i−1
∏l/2

i=1 h2j−1)

if k ≡ 1(mod 2), l ≡ 0(mod 2);

(f1
∏k/2

i=0 g2i
∏l/2

j=1 h2j−1, f2
∏k/2

i=1 g2i−1
∏l/2

j=0 h2j)

if k ≡ 0(mod 2), l ≡ 0(mod 2).

is ramified only at f1 and f2.
We shall assume now that (gk, hl) ∼ 1 for any k < n, l < m. Assume

also that there is k < n such that (gk, hm) 6∼ 1. Then the algebra (gk, hm)
is ramified only at gk. Among all such k choose such that (gi, hm) ∼ 1
for any i < k. Hence the algebra

(f1, g1) ⊗ · · · ⊗ (gk−1, gk) ⊗ (gk, hm)

is is ramified only at f1. Then the algebra

B =























































(f1
∏(k−1)/2

i=0 g2i
∏(m+1)/2

j=1 h2j−1, f2
∏(k+1)/2

i=1 g2i−1
∏(m−1)/2

j=0 h2j)

if k ≡ 1(mod 2), m ≡ 1(mod 2);

(f1
∏k/2

i=0 g2if2
∏(m−1)/2

j=0 h2j ,
∏k/2

i=1 g2i−1
∏(m+1)/2

i=1 h2j−1)

if k ≡ 0(mod 2), m ≡ 1(mod 2);

(f1
∏(k−1)/2

i=0 g2if2
∏m/2

j=0 h2j ,
∏(k+1)/2

i=1 g2i−1
∏m/2

i=1 h2j−1)

if k ≡ 1(mod 2), m ≡ 0(mod 2);

(f1
∏k/2

i=0 g2i
∏m/2

j=1 h2j−1, f2
∏k/2

i=1 g2i−1
∏m/2

j=0 h2j)

if k ≡ 0(mod 2), m ≡ 0(mod 2)

is ramified only at f1 and f2.
By the same way one can obtain that if there is l < m such that

(gn, hl) 6∼ 1, then there exists a quaternion algebra with ramification
only at f1 and f2.
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Finally, we shall assume that (gk, hm) ∼ 1 and (gn, hl) ∼ 1 for any
k < n, l < m. Then the algebra

B =























































(f1
∏(n−1)/2

i=0 g2if2
∏(m−1)/2

j=0 h2j ,
∏(n+1)/2

i=1 g2i−1
∏(m+1)/2

j=0 h2j−1)

if n ≡ 1(mod 2), m ≡ 1(mod 2);

(f1
∏n/2

i=0 g2i
∏(m+1)/2

j=1 h2j−1, M2
∏n/2

i=1 H2i−1
∏(m−1)/2

i=0 h2j−1)

if n ≡ 0(mod 2), m ≡ 1(mod 2);

(f1
∏(n−1)/2

i=0 g2i
∏m/2

j=1 h2j−1, M2
∏(n+1)/2

i=1 g2i−1
∏m/2

j=0 h2j)

if n ≡ 1(mod 2), m ≡ 0(mod 2);

(f1
∏n/2

i=0 g2if2
∏m/2

j=0 h2j ,
∏n/2

i=1 g2i−1
∏m/2

j=1 h2j−1)

if n ≡ 0(mod 2), m ≡ 0(mod 2).

ramifies only at f1 and f2.

Thus in all cases there is a quaternion algebra with ramification only
at f1 and f2.

At the end of the section we present a geometric reformulation of the
theorems above.

Theorem 4. Let f ∈ R((t))[x] be a monic irreducible polynomial which is
a sum of two squares, deg f > 0. Then there exists a conic bundle ϕ : X →
P1

K with local invariant {R((t))(xf ), L}, where xf ∈ P1 is a closed point
corresponding to f and L is a quadratic extension of R((t))(xf ).

Theorem 5. Let f, g ∈ {R((t))(xf )[x] be monic irreducible polynomi-
als which are sums of two squares, deg f1, deg f2 > 0. Then there exists
a conic bundle ϕ : X → P1

K with local invariants {R((t))(xf ), L1} and
{R((t))(xg), L2}, where xf , xg ∈ P1 are closed points corresponding to
f and g respectively and L1, L2 are quadratic extensions respectively of
R((t))(xf ) and of R((t))(xg).

3. Ω-algebras over rational function fields

In this section we consider the application of results from the previous
section to the investigation of Pfister conjecture about u-invariants of
fields.

The u-invariant u(F ) of a field F is defined as sup{dimϕ}, where ϕ
is anisotropic quadratic form over F , [ϕ] is a torsion element of the Witt
group of F. Despite of the computations of u(F ) were done in many cases
for special F so far there are a lot of interesting problems, which are still
open. Among of them may be one of the most interesting is the following
Pfister conjecture posed in [13].
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Conjecture 1. Let F be an extension of transcendence degree m over
some real closed field. Then u(F ) ≤ 2m.

So far this conjecture does not prove even in the case m = 2. We
shall be interested in case, where F is a real field. In that case Pfister
conjecture can be reformulated as the statement of coincidence of the
exponent and the index of the arbitrary Ω-algebra defined as follows.

Let Ω be the set of all orderings of the real field F. Then one has the
following natural homomorphism

ψ : 2Br(F ) →
∏

α∈Ω

2Br(Fα),

where Fα is the real closure of F with respect to an ordering α and

2Br(F ), 2Br(Fα) are 2-torsion parts of the Brauer groups of F and Fα

respectively.

Definition 6. An algebra A representing a nontrivial element of the
kernel of ψ is called an Ω-algebra.

In terms of the previous definition Conjecture 1 in case of real field
F and m = 2 can be formulated as

Conjecture 2. Let F be an extension of transcendence degree 2 over
some real closed field. Then the index of the arbitrary Ω-algebra is equal
to 2.

Let us consider the case, where F is a pure transcendental extension
of degree one of some curve C defined over field of real numbers R, i.e.
F = R(C)(x). Note that one can consider together with R(C) the family
of completions R(C)v of R(C) with respect to valuations v of R(C) trivial
on R. It is easy to see that any such completion is either of the form C((t))
or R((t)). From Conjecture 2 it follows

Conjecture 3. Let F = R((t))(x). Then the index of any Ω-algebra over
F equals to 2.

As a corollary of Theorems 2 and 3 we can prove Conjecture 3 for
some special class of Ω-algebras.

It was noted in [3] that the ramification locus of an Ω-algebra
A/R((t))(x) consists of polynomials which are sums of squares in
R((t))(x) and in addition A∞ ∼ 1. Moreover, in [3] it was shown that
Conjecture 3 is valid for Ω-algebras with ramification loci consisting of
either quadratic polynomials or polynomials with roots, which are not
squares in their root fields over R((t)). Another special cases for Ω-
algebras were considered in [2].
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Now we are in position to formulate the main result about Ω-algebras.
Let f , g be monic irreducible polynomials over R((t)) which are sums of
squares in R((t))[x].

Theorem 6. Let A be an Ω-algebra over R((t))(x). If the ramification
locus of A/R((t))(x) is either {f} or {f, g}, then ind(A) = 2.

Proof. It is easy to see that the quaternion algebras B constructed in the
proofs of Theorems 2 and 3 with ramification respectively at {f} and
{f, g} are Ω-algebras. Hence A ∼ B and ind(A) = 2.

Remark 1. Summarizing we conclude that Conjecture 3 is valid for Ω-
algebras such that its ramification loci are either {f} or {f, g}.
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