14. Беленький М. А., Иванов А. Ф. Электроосаждение металлических покрытий. М., 1985.

15. El-Sherif R. M., Badawy W. A. Mechanism of corrosion and corrosion inhibition of tin in aqueous solutions containing tartaric acid // Intern. J. Electrochem. Sci. 2011. Vol. 6. P. 6469–6482.

16. Matlosz M., Landolt D., Aogaki R., Sato Y., Talbot J. B. Fundamental aspects of electrochemical deposition and dissolution. New Jersey, 1998.

Поступила в редакцию 11.08.2014.

Татьяна Николаевна Воробьева – доктор химических наук, профессор кафедры неорганической химии. *Анна Михайловна Мальтанова* – аспирант кафедры неорганической химии. *Ольга Николаевна Врублевская* – кандидат химических наук, доцент кафедры неорганической химии. *Ольга Юрьевна Григорьева* – студентка 5-го курса химического факультета.

УДК 621.315.59+546.74:546.42;546.05;548.3

А. Е. УСЕНКО, В. В. ПАНЬКОВ, Л. В. МАХНАЧ, Е. С. КРАВЧЕНКО

НИКЕЛАТЫ $Sr_4M_{0,2}Ni_{1,8}O_7$ (М – Ті, Nb, Та, Мо): СИНТЕЗ И СТРУКТУРНЫЕ ОСОБЕННОСТИ

Изучены условия синтеза слоистых никелатов стронция со структурами P/RS и 2P/RS (P – слой перовскита, RS – слой каменной соли) с минимально возможным гетеровалентным замещением никеля элементами IV, V и VI групп таблицы Менделеева в формулах $Sr_2Ni_{1-x}M_xO_4$, $Sr_3Ni_{2-x}M_xO_7$, а также их структурные особенности. Фазовый состав оксидных систем на различных стадиях синтеза контролировали при помощи рентгенофазового анализа (PФA) на приборе ДРОН-3 при использовании СиКа- и СоКа-излучений, элементный состав – при помощи энергодисперсионного рентгеновского микроанализатора, которым был оснащен сканирующий электронный микроскоп (CЭМ) Hitachi S-806. Установлено, что минимально возможное гетеровалентное замещение никеля составляет 0,2, при котором синтезированы оксиды составов $Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_{7+\delta}$, со структурой 2P/RS и определены температурные области их стабильности.

Ключевые слова: никелаты; стронций; титан; ниобий; тантал; молибден; твердофазный синтез; слоистые структуры; перовскит.

The present work was devoted to investigation of synthesis conditions as well as structural features of layered strontium nickelates of P/RS- μ 2P/RS-types (P is a layer of perovskite, RS is a layer of rock salt) with minimally possible heterovalent substitution of nickel by the elements of IV, V and VI groups of periodic table and formulae Sr₂Ni_{1-x}M_xO₄, Sr₃Ni_{2-x}M_xO₇.

Phase homogeneity of the oxide systems was examined by XRD technique (DRON-3, CuK α - and CoK α -radiation), elemental analysis was performed by energodispersive electron X-ray microanalyzer of SEM Hitachi S-806. It was established that minimally possible heterovalent substitution of nickel was equal to 0,2, at which the oxides of formulae Sr₄Ni_{1,8}Ta_{0,1}Ti_{0,1}O_{7+δ}, Sr₄Ni_{1,8}Nb_{0,1}Ti_{0,1}O_{7+δ}, Sr₄Ni_{1,8}Mo_{0,1}Ti_{0,1}O_{7+δ} with 2P/RS structural type were synthesized.

Key words: nickelates; strontium; titanium; tantalum; molybdenum; solid-phase synthesis; layered structures; perovskite.

Оксидные соединения со структурой типа перовскита обладают уникальными магнитными, электрическими, электрохимическими, каталитическими, сенсорными свойствами. К оксидам этого класса относятся высокотемпературные сверхпроводники (YBa₂Cu₃O_{7-δ}[1] и т. п.), твердые электролиты (LaGaO₃) [2], магнеторезисторы с колоссальным магнетосопротивлением (Sr₂FeMoO₆, Sr₂ReMoO₆) [3, 4]. В связи с этим указанные соединения являются объектом постоянных исследований. Усилия ученых направлены на получение новых соединений перовскитного типа. В этих оксидах, как правило, обнаруживаются неординарные физико-химические свойства.

Из многочисленных групп оксидов перовскитного типа – титанатов, манганатов, кобальтитов, купратов и других – выделяются никелаты, имеющие высокую термическую стабильность, широкий диапазон электропроводности и не испытывающие фазовых структурных переходов до температур 900–1000 °C. К настоящему времени хорошо изучены соединения LnNiO₃ (Ln = La – Lu [5]), Ln₂NiO₄ [6] и твердые растворы на их основе. Исследуются и некоторые другие члены гомологического ряда Ln_{n+1}Ni_nO_{3n+1}, например Ln₄Ni₃O₁₀ [7]. Наиболее известными являются твердые растворы Ln_{2-x}Sr_xNiO₄ [8–13]. Предельные составы среди них образуются при x = 1,6-1,67, максимальная степень окисления никеля в которых не превышает значения +3,6. Следовательно, синтез никелатов стронция ряда Sr_{n+1}Ni_nO_{3n+1} проблематичен, поскольку степень окисления никеля в нем должна приближаться к +4. Поэтому оксидные слоистые соединения Sr₂NiO₄ (со структурой P/RS (P – слой перовскита, RS – слой каменной соли)) и Sr₃Ni₂O₇ (2P/RS) получить не удалось. Решить такую задачу, по всей видимости, можно при частичном замещении никеля ионом 3d-элементов со степенью окисления не ниже +4.

Цель настоящей работы – синтез слоистых никелатов стронция со структурами P/RS и 2P/RS с минимально возможным гетеровалентным замещением никеля элементами IV, V и VI групп таблицы Менделеева в формулах Sr₂Ni_{1-x}M_xO₄, Sr₃Ni_{2-x}M_xO₇.

Материалы и методы исследования

Оксиды заданных формульных составов получали методом твердофазного синтеза. В качестве исходных реагентов были использованы азотнокислые соли стронция и никеля: $Sr(NO_3)_2$ (марки ч. д. а.) и $Ni(NO_3)_2 \cdot 6H_2O$ (х. ч.). К водному раствору солей добавляли навеску заместителя в виде мелкодисперсного порошка из следующих оксидов: TiO_2 , Nb_2O_5 , Ta_2O_5 , MoO_3 . Приготовленную суспензию упаривали в муфеле при нагревании до ~350 °C со скоростью ~50 °C/ч. Суспензия, доведенная до кипения, тщательно перемешивалась, при температуре 320–350 °C шел процесс разложения нитрата никеля. Полученный полуфабрикат перетирали, компактировали и ставили на обжиг при 700–750 °C в течение 3–5 ч. На этой стадии происходило плавление с дальнейшим разложением азотнокислого стронция. Образовавшуюся оксидную смесь после перетирания и компактирования подвергали дальнейшему обжигу в токе кислорода для образования проиежуточных соединений прогнозируемых оксидов: сначала при 900–950 °C в течение 10–12 ч, затем при 1000–1050 °C около 25 ч. Завершающую стадию синтеза осуществляли в токе кислорода при температурах 1300–1320 °C в течение 25 ч с промежуточным перетиранием.

Фазовый состав оксидных систем на различных стадиях синтеза контролировали при помощи рентгенофазового анализа (РФА) на приборе ДРОН-3 при использовании СиКα- и СоКα-излучений. Индицирование дифрактограмм выполняли с использованием программы Treor 90, определение параметров кристаллических решеток проводили при помощи программного обеспечения Siemens.

Результаты исследования и их обсуждение

Предварительно проведенные эксперименты показали, что в системах $Sr_2Ni_{1-x}M_xO_y$ при 0,1 $\leq x \leq 0,5$ с заместителями M – Nb, Ta образуются обе кристаллические структуры 2P/RS, P/RS как фазы прорастания. Причем соотношение между ними зависит от концентрации заместителя. С уменьшением x начинает преобладать фаза 2P/RS. При замещении никеля молибденом появляются фазы Sr_2NiMoO_6 и 2P/RS. Были сделаны попытки получить чистую фазу 2P/RS в системах $Sr_3Ni_{2-x}M_xO_y$ смалыми концентрациями тех же заместителей ($0,2 \leq x \leq 0,3$). Однако на дифрактограммах всех образцов, кроме доминирующих линий 2P/RS, были обнаружены линии примеси – NiO, а у составов $Sr_3Ni_{2-x}Mo_xO_y$ – еще и Sr_2NiMoO_6 (слабой интенсивности). С увеличением концентрации стронция интенсивность примесных линий уменьшалась. Монофазными и с минимальным замещением никеля получены оксиды $Sr_4Ni_{1,8}Nb_{0,2}O_y$ и $Sr_4Ni_{1,8}Ta_{0,2}O_y$. Состав $Sr_4Ni_{1,8}Mo_{0,2}O_y$ все еще содержал следы примеси Sr_2NiMoO_6 . При использовании комплексного замещения Ni на Mo – Ti синтезирован монофазный оксид $Sr_4Ni_{1,8}Mo_{0,1}Ti_{0,1}O_y$. Как наилучший результат следует привести и полученные оксиды $Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_y$.

В таблице приведены найденные параметры тетрагональных ячеек синтезированных оксидов $Sr_4Ni_{1.8}M_{0.1}Ti_{0.1}O_v$ (M – Nb, Ta, Mo).

Формульный состав	a	С
$Sr_4Ni_{1,8}Nb_{0,1}Ti_{0,1}O_y$	3,83	20,31
$Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_y$	3,83	20,32
$Sr_4Ni_{1,8}Mo_{0,1}Ti_{0,1}O_y$	3,82	20,30

Параметры тетрагональных ячеек синтезированных оксидов Sr₄Ni_{1.8}M_{0.1}Ti_{0.1}O_v, Å

Как видно из таблицы, значения параметров никелатов с различными заместителями различаются между собой незначительно, так как ионные радиусы никельзамещающих ионов Nb⁵⁺, Ta⁵⁺, Mo⁶⁺ близки [14].

Применение комплексного (M – Ti)-замещения позволило сократить время синтеза обсуждаемых оксидов на завершающей стадии до 20–24 ч и несколько снизить температуру этой стадии – вместо 1300–1320 °C до 1280–1300 °C. Как показал РФА, полученный оксид $Sr_4Ni_{1,8}Ti_{0,2}O_y$ также является монофазным (2P/RS). Однако образец этого состава после хранения на воздухе в течение нескольких суток терял стабильность – растрескивался. Причиной тому был, по-видимому, тот факт, что образец содержал в малых количествах примесь SrO (за пределом чувствительности РФА), гидратация которой парами воды из воздуха и привела к разрушению образца. Аналогичная ситуация наблюдалась и с образцом $Sr_4Ni_{1,9}Mo_{0,1}O_y$. Таким образом, количество комплексной добавки x = 0,2 можно считать тем минимально возможным гетеровалентным замещением никеля в составах $Sr_4Ni_{1-x}(M, Ti)_xO_y$, при котором формируется структура 2P/RS.

Дифрактограммы образца Sr₄Ni_{1,8}Mo_{0,1}Ti_{0,1}O_y, записанные при разных температурах, приведены на рис. 1. Дифрактограммы почти идентичны. Незначительные смещения рефлексов в сторону меньших углов при нагревании образца характеризуют термическое расширение кристаллической решетки. Данные рис. 1 свидетельствуют о высокой термостабильности состава $Sr_4Ni_{1,8}Mo_{0,1}Ti_{0,1}O_y$, отсутствии фазовых переходов и однородности его фазового состава.

Рис. 1. Дифрактограммы образца Sr₄Ni_{1,8}Mo_{0,1}Ti_{0,1}O₂, записанные при различных температурах (СuКα-излучение). Верхняя дифрактограмма (30 °C) получена после охлаждения образца от 850 °C

Микрофотографии образца того же состава подтверждают его однофазность (однородность) (рис. 2). На рис. 2 видно, что керамика имеет поры, природа которых пока не ясна. Микрозондовый анализ подтвердил соотношение между катионами, заложенное в исходной формуле.

Рис. 2. СЭМ-снимок поверхности образца Sr₄Ni_{1.8}Mo_{0.1}Ti_{0.1}O_v (режим отраженных электронов)

Возникает вопрос о несоответствии формульного состава, например, $Sr_4Ni_{1,8}Mo_{0,1}Ti_{0,1}O_y$ кристаллической структуре 2P/RS. До сих пор было известно, что данная структура реализуется в оксидах, где на формальную единицу приходится 3 атома стронция: $Sr_3Ti_2O_7$, $Sr_3Fe_2O_7$, Sr_3MoFeO_7 [15–17] и т. п. Базовым перовскитом, к примеру, слоистого оксида $Sr_3Ti_2O_7$ является $SrTiO_3$, и структура 2P/RS реализуется в оксиде по схеме

$$(P) - (P) - (RS);$$

SrTiO₃ - SrTiO₃ - SrO.

У полученного оксидного соединения $Sr_4Ni_{1,8}Mo_{0,1}Ti_{0,1}O_y$ базовым перовскитом, по-видимому, является двухслойный перовскит $Sr_3Ni_{1,8}Mo_{0,1}Ti_{0,1}O_6$. Тогда формирование соединения должно проходить по реакции

$$Sr_3Ni_{18}Mo_0Ti_0O_6 + SrO \rightarrow Sr_4Ni_{18}Mo_0Ti_0O_{2}$$

Перовскит Sr₃Ni_{1,8}Mo_{0,1}Ti_{0,1}O₆ пока еще не синтезирован, однако такого типа соединение с висмутом Sr₃Bi₂O₆ известно [18]. При температурах выше 1340–1350 °C оксиды Sr₄Ni_{1,8}Ta_{0,1}Ti_{0,1}O₇, Sr₄Ni_{1,8}Nb_{0,1}Ti_{0,1}O₇, Sr₄Ni_{1,8}Mo_{0,1}Ti_{0,1}O₇ начинают разлагаться. На рис. 3, *a*, приведена дифрактограмма образца Sr₄Ni_{1,8}Ta_{0,1}Ti_{0,1}O₇, обожженного при 1340 °C в тече-

На рис. 3, *a*, приведена дифрактограмма образца $Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_7$, обожженного при 1340 °C в течение 4 ч, из которой видно, что образец стал гетерофазным. Кроме основной фазы 2P/RS проявились рефлексы примесей: SrO (интенсивные линии) и NiO (менее интенсивные линии).

Рис. 3. Дифрактограммы полученных оксидов: a – образца Sr₄Ni_{1,8}Ta_{0,1}Ti_{0,1}O₇, обработанного при различных температурах (СиК α -излучение): — – 1300 °C; •••• – 1340 °C; δ – фрагмент дифрактограммы образца Sr₄Ni_{1,8}Ti_{0,2}O₇, обработанного при t = 1340 °C (СоК α -излучение)

На дифрактограмме образца $Sr_4Ni_{1,8}Ti_{0,2}O_7$ (рис. 3, *б*), обожженного при температуре 1340 °С в течение 7 ч, наряду с рефлексами SrO и NiO (в малых количествах) зафиксированы довольно интенсивные линии перовскита, которые можно отнести к составу $Sr_3Ni_{1,8}Ti_{0,2}O_6$. Вероятно, разложение фазы $Sr_4Ni_{1,8}Ti_{0,2}O_7$ идет по реакции, обратной вышеприведенной. Выпадение небольшого количества NiO при этом можно объяснить незначительным восстановлением $Ni^{+(3+k)}$ при высокой температуре. На дифрактограмме образца $Sr_3Ni_{1,8}Ti_{0,2}O_x$, обожженного при 1350 °С в течение 10 ч, рефлексы перовскита доминируют. Чтобы получить перовскитную фазу в чистом виде, образец, вероятно, необходимо обжигать при более высокой температуре. Известная перовскитная фаза $SrNi_{0,33}Ti_{0,67}O_3$, например, синтезировалась при температуре 1400 °С в течение 24 ч [19].

Следует ожидать, что полученные оксидные соединения будут нестехиометричными по кислороду и должны содержать избыточный кислород. Можно теоретически оценить их кислородный индекс. Возьмем, к примеру, $Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_{7+\delta}$. Учитывая тот факт, что в оксидных соединениях никеля со стронцием стабилизирует никель в степени окисления не ниже +3, из соображений электронейтральности формула соединения запишется в виде

$$Sr_{4}^{+2}Ni_{1,8}^{+3}Ta_{0,1}^{+5}Ti_{0,1}^{+4}O_{7+\delta}^{-2},$$

$$[4(+2) + 1,8(+3) + 0,1(+5) + 0,1(+4)] = [(7+\delta)(-2)],$$

откуда $\delta = 0,15$.

Тогда уточненная формула будет иметь вид: $Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_{7,15}$. Степень окисления никеля в полученных оксидах может быть выше +3. Так, например, в слоистых никелатах $Sr_{1,4}La_{0,6}Ni_{3,96}$ и $Sr_{1,7}Ce_{0,3}Ni_{3,91}$ со структурой типа K_2NiF_4 она составляет от +3,3 до +3,4 [20, 21]. Поэтому не исключено, что после обработки в кислороде при невысоких температурах новые оксиды будут иметь $\delta=0,42-0,51$. Следовательно, синтезированные в данной работе оксидные соединения $Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_{7+\delta}$, $Sr_4Ni_{1,8}Nb_{0,1}Ti_{0,1}O_{7+\delta}$, $Sr_4Ni_{1,8}Mo_{0,1}Ti_{0,1}O_{7+\delta}$ содержат большое количество мобильного междоузельного кислорода. На основании этого и с учетом их высокой термостабильности эти соединения являются весьма привлекательными для применения в твердооксидных топливных элементах в качестве катодов и кислородоселективных мембран. Правда, во втором случае мембрана должна быть газоплотной. Необходимо выяснить причины образования пор в полученной керамике. Возможно, это связано с условиями синтеза последней, поэтому здесь требуются соответствующие доработки, т. е. необходимы дополнительные исследования и для нахождения оптимальных условий синтеза предполагаемого слоистого перовскита Sr₃Ni_{1.8}(MTi)_{0.2}O₆.

Таким образом, продемонстрирована принципиальная возможность и изучены условия синтеза слоистых никелатов стронция $Sr_4Ni_{1,8}Ta_{0,1}Ti_{0,1}O_{7+\delta}$, $Sr_4Ni_{1,8}Nb_{0,1}Ti_{0,1}O_{7+\delta}$, $Sr_4Ni_{1,8}Mo_{0,1}Ti_{0,1}O_{7+\delta}$ со структурой 2P/RS (P – слой перовскита, RS – слой каменной соли) с минимально возможным гетеровалентным замещением никеля элементами IV, V и VI групп таблицы Менделеева. Установлено, что значение x (минимально возможное гетеровалентное замещение) составляет 0,2. Благодаря наличию мобильного кислорода и высокой термостабильности эти соединения являются весьма перспективными для применения в твердооксидных топливных элементах в качестве катодов, а также в качестве кислородоселективных мембран.

Работа выполнена при поддержке БРФФИ № Х13МС-017.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Третьяков Ю. Д., Гудилин Е. А. Химические принципы получения металлооксидных сверхпроводников // Успехи химии. 2000. Т. 69, № 1. С. 3–40.

2. Ishihara T., Matsuda H., Takita Y. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO₃-based perovskite type oxide // Sol. St. Ionics. 1995. Vol. 79. P. 147–151.

3. Kobayashi K. I., Kimura T., Sawada H., Terakura K., Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure // Nature. 1998. Vol. 395. P. 677–680.

4. Kobayashi K. I., Kimura T., Tomioka Y., Sawada H., Terakura K., Tokura Y. Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr_2FeReO_6 // Phys. Rev. B. 1999. Vol. 59, No 17. P. 11159–11162.

5. Rosenkranz S., Medarde M., Fauth F., Mesot J., Zolliker M., Furrer A., Staub U., Lacorre P., Osborn R., Eccleston R. S., Trounov V. Crystalline electric field of the rare-earth nickelates RNiO₃ (R=Pr, Nd, Sm, Eu, and $Pr_{1-x}La_x$, $0 \le x \le 0,7$) determined by inelastic neutron scattering // Phys. Rev. B. 1999. Vol. 60, Nº 21. P. 14857–14867.

6. Shaula A. L., Naumovich E. N., Viskup A. P., Pankov V. V., Kovalevsky A. V., Kharton V. V. Oxygen transport in La₂NiO_{4+ δ}: Assessment of surface limitations and multilayer membrane architectures // Sol. St. Ionics. 2009. Vol. 180. P. 812–816.

7. A mow G., Davidson I. J., Skinner S. J. A comparative study of the Ruddlesden-Popper series, $La_{n+1}Ni_nO_{3n+1}$ (n = 1, 2 and 3), for solid-oxide fuel-cell cathode applications // Sol. St. Ionics. 2006. Vol. 177. P. 1205–1210.

8. Takeda Y., Kanno R., Sakano M., Yamamoto O., Takano M., Bando Y., Akinaga H., Takita K., Goodenough J. B. Crystal chemistry and physical properties of $La_{2-x}Sr_xNiO_4$ ($0 \le x \le 1,6$) // Mater. Res. Bull. 1990. Vol. 25. P. 293–306.

9. Makhnach L. V., Pankov V. V., Strobel P. High-temperature oxygen non-stoichiometry, conductivity and structure in strontium-rich nickelates $La_{2-x}Sr_xNiO_{4-\delta}$ (x = 1 and 1,4) // Mater. Chem. Phys. 2008. Vol. 111. P. 125–130.

10. Li Qiang, Fan Yong, Zhao Hui, Sun Li-Ping, Huo Li-Hua. Preparation and electrochemical properties of a Sm_{2-x}Sr_xNiO₄ cathode for an IT-SOFC // J. Power Sources. 2007. Vol. 167, № 1. P. 64–68.

11. Hu Z., Golden M. S., Fink J., Kaindl G., Warda S. A., Reinen D., Mahadevan Priya, Sarma D. D. Hole distribution between the Ni 3d and O 2p orbitals in $Nd_{2-v}Sr_vNiO_{4-\delta}$ // Phys. Rev. B. 2000. Vol. 61, No 5. P. 3739–3744.

12. Simeonov S., Kozhukharov S., Grenier J.-C., Machkova M., Kozhukharov V. Assessment of $Nd_{2-x}Sr_xNiO_{4-d}$ as a cathodic material solid oxide fuel cell applications // J. Chem. Technol. Metallurgy. 2013. Vol. 48, Nº 1. P. 104–110.

13. Punde D. J., Khandale A. P., Bhoga S. S. Effect of Sr doping on structural, electrical and electrochemical properties of $Nd_{2-x}Sr_{x}NiO_{4+\delta}$ mixed ionic-electronic conductors // Indian J. Pure Appl. Physics. 2013. Vol. 51. P. 376–380.

14. Shannon R. D., Prewitt C. T. Revised values of effective ionic radii // Acta Cryst. B. 1970. Vol. 26, № 7. P. 1046–1048. 15. Mori K., Kamiyama T., Kobayashi H., Torii S., Izumi F., Asano H. Crystal structure of Sr₃Fe₂O_{7-δ} // J. Phys. Chem. Solids. 1999. Vol. 60, № 8/9. P. 1443–1446.

16. Prado F., Armstrong T., Caneiro A., Manthiram A. Structural stability and oxygen permeation properties of $Sr_{3-x}La_xFe_{2-y}Co_yO_{7-\delta}$ ($0 \le x \le 0.3$ and $0 \le y \le 1.0$) // J. Electrochem. Soc. 2001. Vol. 148, No 4. P. J7–J14.

17. Élcombe M. M., Kisi E. H., Hawkins K. D., White T. J., Goodman P., Matheson S. Structure determinations for $Ca_3Ti_2O_7$, $Ca_4Ti_3O_{10}$, $Ca_{3,6}Sr_{0,4}Ti_3O_{10}$ and a refinement of $Sr_3Ti_2O_7$ // Acta Crystallogr., Sect. B: Struct. Sci. 1991. Vol. 47, No 3. P. 305–314.

18. Suzuki R. O., Kambara S., Tsuchida H., Shimizu K., Ono K. Phase equilibria of Bi_2O_3 -SrO-CaO-CuO system at 1123 K in air // Advances in Superconductivity II : Proc. of the 2nd Intern. Symp. on Superconductivity (Tsukuba, Nov. 14–17, 1989). Tokyo, 1990. P. 235–238.

19. Galasso F., Pyle J. Ordering in compounds of the A(B'_{0.33}Ta_{0.67})O₃ type // Inorg. Chem. 1963. Vol. 2, № 3. P. 482–484.

20. Махнач Л. В., Толочко С. П., Кононюк И. Ф., Вашук В. В., Продан С. А. Нестехиометрия и электрические свойства твердых растворов $La_{1-x}Sr_{1+x}NiO_{4\pm\delta}$ (0 ≤ $x \le 1$) // Неорган. материалы. 1993. Т. 29, № 12. С. 1678–1681.

21. Махнач Л. В., Толочко С. П., Вашук В. В., Струкова О. В., Ольшевская О. П., Зонов Ю. Г. Синтез и некоторые физико-химические свойства твердых растворов системы La-Ce-Ni-O и Sr-Ce-Ni-O // Неорган. материалы. 2002. Т. 38, № 12. С. 1479–1484.

Поступила в редакцию 17.04.2014.

Александра Евгеньевна Усенко – кандидат химических наук, старший преподаватель кафедры физической химии.

Владимир Васильевич Паньков – доктор химических наук, профессор, заведующий кафедрой физической химии химического факультета.

Леонид Викторович Махнач – кандидат химических наук, старший научный сотрудник научно-исследовательской лаборатории физической химии конденсированных сред химического факультета.

Екатерина Степановна Кравченко – аспирант кафедры физической химии. Научный руководитель – доктор химических наук, профессор В. В. Паньков.