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Neural networking technique with models based on ordinary/partial differential equations
is applied to the known incorrect problems. Solutions to such problems by routine approaches
are difficult. The problem approximate solution is found as the artificial neural network
output with a prescribed architecture. Network weights are determined in the stepwise
network training based on the error functional minimization process in general. The case
of the system parameters given in some variation intervals and the parameter set as a part
of input data is considered. The construction of robust parameter neural network models is
examined using some problems in classical and non-classical statements. The direct problem
solution and the inverse problem regularization for the offered neural network approach are
constructed uniformly. The neurocomputing results for fixed and growing neural networks
are given. The supercomputer use is discussed. The neural network approach advantages and
some possible generalizations are mentioned.
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1. Introduction

Solution to the problem of multiscale
process predictive modeling in natural and
technical systems by classical methods of
mathematical modeling faces a number of
fundamental problems.

Most of these methods require the
construction of computational grids. Despite
the many works dealing with the construction
of nets, their generation remains a complex
and time consuming task in the case of higher
dimensions and areas of complex configuration.
Very often the resulting system of linear algebraic
equations is ill-conditioned, which leads to an
unjustified increase in the cost of its solution.
Continuous solution recovery from its discrete
approximation is a separate significant task.

Another problem is that differential
equations and boundary conditions or initial
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conditions (or other ones) correspond to the
object (phenomenon, process) being modeled
approximately. In engineering applications,
the accuracy of the differential model of 10-
20% is rather common. In such a situation,
an approximate solution of the corresponding
differential equation with an accuracy of 0.001%
is not only unjustified by practical needs, but can
cause the researcher harmful illusions about the
accuracy of the original object modeling.

To increase the accuracy of modeling it is
necessary to consider all information available
to researchers, information that can be initially
incomplete but recharged during the simulation
while the model can be adjusted and tuned in the
process of monitoring the functioning real object.
An experienced specialist (keyman) has some ill-
formalized a priori information about the object
under study, and the researcher should be able
to take into account similar information in the
process of model building.

Parallelizability and scalability of algorithms
under consideration are separate problems.
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Their study and solution is a necessary
prerequisite for their effective implementation
on supercomputers. Often the problems of the
computational process parallelization are solved
in the programming phase although developing
and implementing obviously parallelizable
methods and algorithms is more effective.

Application of artificial neural networks
(ANN) for modeling [1–5] is justified to solve the
mentioned problems. Stability of neural networks
with respect to potential errors in the data
and the natural parallelization are an important
incentive for it.

Hundreds of articles on this topic are being
published in the world annually (see review [6]).
Different versions of the collocations are employed
in most studies, though all variants of the
collocation method do not guarantee adequate
model construction in the whole considered
area. Also only the coefficients of the model
are selected. Such an approach leads to the
need for guessing the structure or its choice on
the basis of general theoretical considerations.
Excessive bulkiness of models and unjustifiably
high computational costs in their construction are
the result.

Methods presented in Russian and foreign
literature depend heavily on the characteristics
of the problem: shaped borders, nonlinear terms,
phase transitions, chemical reactions, etc. Our
methods [1] require only a small adaptation,
allowing to take into account the specific
characteristics of the problem being solved and
to solve consistently direct, inverse problems, and
the problem of constructing a family of solutions
depending on some set of parameters.

Over-cost of supercomputer system time for
solving a series of similar problems is the next
challenge. Building a model on the supercomputer
with its further use on the client computer is more
efficient. In this case such a model should give
opportunity for its correction on the basis of some
additional information accounting. Reusability
of the obtained models is very interesting and
promising. In this regard parameterized models
are of great interest [7, 8].

The task of constructing a parameterized
model arises when you want to investigate the
behavior of solution depending on a parameter, or
to identify the parameter value according to the
measurement data, or when the characteristics
determining the modeled system are not exactly
known, and are given by values distributed in
some intervals (interval parameters).

2. Artificial neural network
approach: neurocomputing

Let us explain the essence of our approach
on the simplest boundary value problem{

A(u) = g, u = u(x),
x ∈ Ω ⊂ Rp, B(u) |Γ = f

(1)

where A(u) is some differential operator, B(u) is
some operator that allows us to set the boundary
conditions, Γ is the boundary of the domain Ω.

When the problem is modified so that its
statement includes parameters r = (r1, . . . , rk),
changing at some intervals: ri ∈ (r−i ; r

+
i ), i =

1, k, then the idea for the approximate solution of
problems changes as well:

{
A(u, r) = g(r), u = u(x, r),
x ∈ Ω(r) ⊂ Rp, B(u, r)

∣∣
Γ(r) = f(r).

(2)

We are looking for an approximate solution
of the problem (2) as the output of an artificial
neural network (ANN) with a given architecture

u(x, r) =

N∑
i=1

civi(x, r, ai).

ANN weights (linear input parameters ci and
nonlinear input parameters ai) are determined in
the process of stepwise neural network training
based on some error functional minimization.
Here the error functional is given in the form

J(u) =

M∑
j=1

|A(u(xj , rj))− g(xj , rj)|2
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+ δ
M ′∑
j=1

∣∣B(u(x′j , r
′
j))− f(x′j , r

′
j)
∣∣2

where {xj , rj}Mj=1 are the periodically updatable
test points in the region Ω(rj) ×

∏k
i=1(r

−
i ; r

+
i ),

{x′j , r′j}M
′

j=1 are test points on the boundary Γ(r′j);
δ > 0 is a penalty parameter.

Let us examine some examples.
1. Analysis of heat and mass balance in

a porous catalyst flat pellet in the catalytic
chemical reaction leads — in dimensionless
variables — to the following nonlinear boundary

value problem [9]: it is required to find a solution
y(x) of the ordinary differential equation

d2y

dx2
= α(1 + y) exp

[
− γβy

1− βy

]
with the boundary conditions

dy

dx
(0) = 0, y(1) = 0.

The above-mentioned neural network
approach was applied to this nonlinear problem.
Using a heterogeneous neural network with basic
neuroelements of the form

v(x, α, β, γ, a1i, a2i, ..., a8i) = exp{−a1i(x− a2i)
2} tanh{−a3i(α− a4i)}

× tanh{−a5i(β − a6i)} tanh{−a7i(γ − a8i)}

showed to be the most effective.
The error functional J(y) being minimized

was given in the form

M∑
j=1

(∣∣∣∣y′′(xj , αj , βj , γj)− αj(1 + y(xj , αj , βj , γj)) exp

[
− γjβjy(xj , αj , βj , γj)

1− βjy(xj , αj , βj , γj)

]∣∣∣∣2
)

+δ

M∑
j=1

(∣∣y′(0, αj , βj , γj)
∣∣2 + |y(1, αj , βj , γj)|2

)
.

Calculations were performed for the
following intervals of parameter variation

α ∈ (0.05; 0.15), β ∈ (0.4; 0.6), γ ∈ (0.8; 1.2).

Optimal values of the weights for the approximate
neural network solution y(x, α, β, γ) were
selected on the basis of minimizing the
functionalJ by the variant of dense cloud method

which in this case was the most effective. For the
neural network having N = 30 neuroelements
with the following parameter values: the size of
the cloud ε = 0.03, the penalty coefficient δ = 1,
the number of test points M = 100, the values
of an approximate solution of the problem at the
control points differ from the data given in the
study [9] less than 2%.
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2. Initial boundary value problem for the
heat conduction equation, on the assumption that
the thermal diffusivity r is known approximately,
has the following form

ut = ruxx, (x; t) ∈ (0; 1)× (0;T ),

r ∈ (r−; r+), u(x, 0, r) = ϕ(x), x ∈ (0; 1),

u(0, t, r) = u(1, t, r) = 0, t ∈ [0;T ].

We seek an approximate solution of the
problem in the form of a neural network output

u(x, t, r) =

N∑
i=1

cie
−ai(x−xi)

2−bi(x−xi)(t−ti)−di(t−ti)
2

× tanh(pi(r − ri))

where r ∈ (r−; r+).
Network training was carried out by

minimizing the error functional:

J(u)
def
= J(w) = J1(w) + δbJb(w) + δCJC(w)

where w = (w1, .., wN ) is the vector of network
weights;

J1(w) =

N1∑
j=1

{ut(ξj , τj , ηj)− rjuxx(ξj , τj , ηj)}2

is the term corresponding to the equation;

Jb(w) =

Nb∑
j=1

{
u2(0, τj , ηj) + u2(1, τj , ηj)

}
is the term corresponding to the boundary
conditions;

JC(w) =

NC∑
j=1

{u(xj , 0, rj)− ϕ(xj)}2

is the term corresponding to the initial conditions
(the same for samples with different values of
the thermal diffusivity r); δb, δC > 0 are penalty
coefficients.

The variant of the method of growing
networks with the rejection of some added

elements is used for the selection of the
ANN structure [1]. Neurocomputing results show
that in the case of noisy Cauchy’s data the
continuation of the solution by the parameter r in
a rather wide interval of variation also is possible.

3. Let us consider constructing a neural
network model of the temperature field from
the experimental data under the condition that
cooling samples have different thermal diffusivity.
In this case the initial temperature distribution is
uniform.

The formal statement of the problem
appears as follows:

ut = ruxx, (x; t) ∈ (0; 1)× (0;T ), r ∈ (r−; r+),

u(0, t, r) = u(1, t, r) = 0, t ∈ [0;T ],

u(xi, ti, ri) = fi, i = 1, p.

A solution of the problem was sought in the form

u(x, t, r) =

N∑
i=1

cie
−ai(x−xi)

2−bi(x−xi)(t−ti)−di(t−ti)
2

× tanh(pi(r − ri))

where r ∈ (r−; r+). The ANN weight selection
was accomplished through the minimization of
the error functional which was obtained from
the functional in the previous example by the
replacement of last term with the following one

Jd(w) =

Nd∑
j=1

{u(xj , tj , rj)− fj}2 .

In this problem neurocomputing results
are similar to the results of the previous two
examples.

3. Unified process

Building ANN solution to complex problems
of mathematical modeling is based on the
previously mentioned methodology [10]. This
process can also be used to construct approximate
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non-neural network models. The main stages of
this process are the following ones:

1. Quality of the model is characterized
by a functional (set of functionals). This step
is based on information about the models of
the phenomena studied. (These models are
specified in the process of solution building, object
constructing and functioning.) This step can be
implemented by an expert in the subject area.

2. A functional basis (set of bases) is selected.
This step may be performed both by an expert
in the subject area, using the information about
the nature of the simulated phenomena, and
automatically, using evolutionary algorithms (see
works [1–3]). The neural network bases are
effective in solving various problems and weakly
depend on the characteristics of the problem
itself.

3. Methods of selecting parameters
and structure of the model are chosen and
implemented. This stage can be fully automated
and does not require participation of an expert
in the subject area, although some available
approximate expert information about the
behavior of the object can be easily taken into
account when constructing the model.

4. Methods for verifying and refining
models of objects during their functioning and
appropriate tuning of control algorithms for the
constructed models are implemented. Principles
of such methods construction are discussed
below. These methods and algorithms can be
implemented in a software package that will be
used by specialists in application areas for a wide
range of tasks.

5. Databases of models, algorithms and
programs are being replenished.

4. Advantages and generalizations

The hierarchical parallelism of resulting
algorithms is the undoubted advantage of the
neural network approach.

At the lowest level the application of the
learning algorithm requires the computations

of neural network function values, usually (if
gradient optimization algorithms are used) it
is necessary to calculate the derivatives of
neural network function according to its weights;
the application of higher order algorithms may
require the computations of relevant higher
derivatives. These operations are parallelized in
a natural way for neural network functions,
which makes them highly scalable to multi-
core computing systems. One should separately
emphasize the possibility of adapting the
structure of the network under the configuration
of the computer system.

Applied to the next level, parallelization
techniques of optimization algorithms are quite
well researched, therefore we will not dwell on this
issue.

At the third level there are the evolutionary
algorithms allowing us to combine the selection
of network weights and adapting its structure.
Several of these algorithms are discussed below.
Such algorithms as a rule tend to not only
allow good parallelization, but they also can be
effectively implemented in distributed systems.
This issue is discussed further in the description
of each algorithm.

The problem of predictive modeling of multi-
scale processes in natural and technical systems
posed above admits the following generalization
comprising a lot of standard and non-standard
tasks.

Let there be given a set of conditions
{Aq(u1, u2, . . . , ur)|Ωq = 0}Qq=1 where Ωq is

a set on which the corresponding condition must
be fulfilled and us, s = 1, r, are some unknown
functions.

Operators Aq set equations (usually these
are partial differential equations or their discrete
approximation when considering the net-point
method) and the boundary and other conditions
such as conservation laws, equations of state,
symmetry requirements or data derived from
experiment, as well as other requirements for
the solution of the problem. During training,
operators Aq can vary, for example, include
pieces of information incoming newly into
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examination or in the transition from the
functional representation to the grid ones and vice
versa.

We will seek every unknown function as an
expansion:

us(x) =

Ns∑
i=1

ci,sϕs(x; ai,s), s = 1, r

where weights (parameters ai,s) and coefficients
ci,s are selected by minimizing the error functional
composed of terms of the form

Mq∑
j=1

∣∣Aq(u1, u2, . . . , ur)(xj,q)|Ωq

∣∣2 ,
each entering into the sum with a weight factor
δq > 0 usually being fixed beforehand or
recalculated from time to time on a certain
procedure. Corresponding test points xj,q ∈ Ωq

are selected randomly after a certain number of
steps of the optimization algorithm. Terms in the
functional need not be quadratic; they can be
taken in a different form.

To resolve this problem, one can apply
several fundamentally different options for the
algorithm.

1. It is possible to compose a single
functional using all conditions and to seek
all parameters at once. This option is very
demanding of computational resources.

2. You can make several functionals based
on different sets of conditions, and adjust parts
of weights minimizing each of them alternately.
With a rational organization of calculations this
option allows to speed up calculations, but a
separate problem arises: a reasonable choice of the
structure of the models used.

3. It is possible to apply one of the
algorithms combining the selection of model
parameters and its structure. This option allows
you to get the most accurate and adequate
solution to the problem assigned. Five approaches
of this type are discussed below.

5. Evolutionary or metaheuristic
algorithms

5.1. Generalized algorithm of clustering
errors

Step 1. We are looking for a starting set of
functions, so we perform several steps to minimize
the error functional.

Step 2. We calculate the error for every
function package on a test set, meanwhile the test
sets are regenerated after each phase of training
(passing a certain number of steps in the process
of minimizing the functional). If the condition is
not defined at some point, we assume that the
error is equal to 0.

Step 3. We perform clustering collection of
test point sets and corresponding errors in the
appropriate space.

Step 4. For every cluster we build
approximation giving the minimum error for
the restriction of the error functional.

Step 5. We add the terms constructed at
the preceding step to the functions required and
repeat Step 1 with the set received.

Step 6. If the functional is insufficiently
small, then we replenish the population of
collections approximating the clusters and
repeating Steps 1− 5 using a new sample.

It should be noted that the method
proposed makes any special demands neither to
a region form (connectedness, the possibility of
decomposition) nor to the equation (linearity, real
coefficients). However, the complication of such
model data as the area shape and the equation
leads to the difficulty of selecting the initial values
of model parameters, to increase of the number of
functions required to achieve the desired accuracy
of the solution, and to corresponding slow down
of the process of nonlinear optimization.

Calculations in Step 4 are independent for
every cluster, so they can be implemented on
different nodes of a computer system.
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5.2. Generalized Schwarz’s method

In this case, we essentially use the
possibility to decompose the original domain into
subdomains that intersect only at the parts of the
boundaries.

Step 1. We act just as it was described in
the previous approach I for the entire region: we
build its own approximation for the solution in
each subdomain using by definition of the error
functional a corresponding part of the conditions,
meanwhile placing the control point sets on the
boundary where boundary conditions are known.

Step 2. Approximation for the unknown part
of the boundary conditions at the boundaries of
each subdomain occurs after a certain number of
stages of training for each set of neural networks.

Step 3. Data exchange occurs — we
introduce additional terms into each of the error
functionals; these summands are determined by
the information about a solution on the part of the
boundary of subdomains where solutions have not
been set. This piece of information is the solution
built on another subdomain.

Step 4. The computational procedure is
repeated a predetermined number of times or
until the required level of accuracy is reached.

Modification of the Schwarz method seems
more interesting in the case when the subdomains
can not only have a common interface, but also
intersect in sets of positive measure. In this case,
information about some solution mismatch is
introduced into the error functionals in Step 3
of the algorithm where the sampling points are
taken at the intersection of the corresponding
subdomains (this gives a smoother interfacing).

Calculation of approximate solutions
for subdomains and data exchange in the
construction of the solution for the entire domain
can be implemented within a framework of grid-
technologies. In this case, the solution for each
subdomain is selected on its own computer taking
into account the approximations of solutions at
the intersection with neighboring areas. Pieces
of information concerning these approximate
solutions are gathered from time to time from

corresponding computers.

5.3. Approach based on the group
method of data handling (GMDH)

Step 1. We choose some set of suites of basis
functions for each condition.

Step 2. We consider linear combinations
of such suites and choose their coefficients by
minimizing the error functionals built on the
basis of sampling points from the corresponding
subdomains.

Step 3. We select the best of the resulting
functions in the sense of the best values of the
error functionals that are based on sampling
points from the subdomains intersecting (close to)
the subdomains used in the previous step. It is
possible to use several of these functionals for such
a selection.

Step 4. We examine the linear combinations
of resulting functions and repeat the previous
steps tuning parameters of the models by some
functionals and selecting the best performing
models by other functionals until the error is
sufficiently small.

Step 2 for different models is implemented
independently, therefore it can be effectively
implemented in a multiprocessor and distributed
system.

5.4. Specialized genetic algorithm for
constructing a set of neural networks using
domain decomposition

Step 1. We build an ANN-population via
some given number of solution approximations for
each subdomain using the corresponding part of
the conditions by the error functional definition;
in this case, as in the second approach (II), the
boundary conditions are used only on the part of
the boundary: control point sets are taken on the
border where the boundary conditions are known.

Step 2. For further work we select the best
model of each group on the basis of the error
functional minimum; the control points in the
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functional are taken from the complement to the
area used in the previous step.

Step 3. We produce random mutations of the
models; the probability of these mutations is the
greater, the bigger are errors on their own area
and on their complement area. These mutations
can be of different types: removal of a term with
a minimum coefficient of the basis function in the
sum for the given model or deleting a random
term, addition of the basis function with random
internal parameters, random change of network
weights to a certain value, etc.

Step 4. We carry out crossing — we take
a specified number of best models (in the sense
of minimizing the corresponding functional), we
choose two of them, and we take some terms from
one model and additional part of terms from the
other model, the result is a new model called
a descendant that replenishes a set of selected
models. This operation is repeated with some
set of pairs of such models. In this case some
part of descendants is produced from models
of one population (models trained on the same
set), other part is produced from models of
different populations. The resulting descendants
complement each population to its former size.

Step 5. We repeat the previous steps a
certain number of times or until the error
functional throughout entire region for some
collection of models becomes sufficiently small.

This genetic approach is easily adapted
to distributed computing. The most natural
variant arises if each collection of models is
selected in its node. In this case only some
models (sets of parameters and information
about the structure) or parts of models for
the crossing must be transferred between nodes.
In addition, some information may be sent,
for example, the values of the optimizable
functionals. If there are few nodes, several
populations can be trained on a single node;
it seems to be reasonable implementing a more
intense hybridization between them than between
populations from different nodes. If there are
many nodes, then some part of the population or
even individual elements can be placed on each of

them. This will not too strongly affect the speed of
calculations, especially in the case of large models,
as the most time-consuming operation (parameter
selection) is implemented locally.

5.5. Training collective of ANN-models

Step 1. We select a specified number of sets
of neural network functions minimizing the single
error functional.

Step 2. For each subdomain we choose a set
of models for which the error functional built on
the basis of sampling points corresponding to this
subdomain is the minimal one.

Step 3. We select each suite on its own subset
Ωq including terms that are responsible for the
mismatch at the joints in the error functional
minimized (see approach II).

The result of training is the approximate
solution which is given in each subregion by the
corresponding model.

This algorithm allows such a modification in
which the area decomposition is not given a priori
and it is produced naturally in the course of the
algorithm, i.e., the subregion includes the points
for which the error functional for a given set of
functions is smaller than the functional for other
sets of functions in the population.

Just like the previous one, the approach
V admits a reasonably efficient distributed
implementation. The simplest option is to train a
separate set of functions, which turned out to be
the best on some subset, on each node. In this case
you only need to send on the information about
the behavior of the approximation on the joints
and only from those nodes which correspond to
the region with the mating area for this node. It is
also a possible variant of the algorithm when one
node corresponds to several sets of functions. If
you have got many nodes, then you can teach one
set of functions on several nodes implementing
some distributed algorithm.

If all the sets which the sampling points are
taken from are finite, the different variants of the
net-point method are obtained by an appropriate
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choice of the operators defining the conditions,
and this fact forms the basis for the development
of hybrid methods.

6. Conclusion

The above evolutionary approaches
(approaches IV and V in the first place)
allow us to use models built for close typical
problems as elements of an initial population.
Accumulation of data base of built models
(model hierarchies) or trained neural networks
for common tasks should be one of the most
important activities in the field of modeling. We

can use data from such a storage ready-made or
refine them to solve new problems taking these
basic models as initial approximation.

Approach which examines the whole
hierarchy of models at once as both differential
and functional including all available background
information, allowing the evolution of the models
at any level and the ability to enter new data
into consideration, can be considered the most
promising.

Natural parallelism of models considered and
methods for constructing such models allows to
effectively implement them on modern GPUs on
the basis of CUDA technology.
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