Белорусский государственный университет

Регистрационный № УД - 476/уч.

Введение в системную биологию

Учебная программа учреждения высшего образования по учебной дисциплине для специальностей:

1-31 01 01 Биология (по направлениям);

1-31 01 02 Биохимия

1-31 01 03 Микробиология

Учебная программа составлена на основе ОСВО 1-31 01 01-2013, ОСВО 1-31 01 02-2013, ОСВО 1-31 01 03 и учебных планов УВО № G31-129/уч. 2013 г., № G31-130/уч. 2013 г., № G31-131/уч. 2013 г., № G31-132/уч. 2013 г., № G31-135/уч. 2013 г., № G313-156/уч. 2013 г., № G313-157/уч. 2013 г., № G313-158/уч. 2013 г., № G313-159/уч. 2013 г.,

составители:

Вадим Викторович Демидчик, заведующий кафедрой клеточной биологии и биоинженерии растений Белорусского государственного университета, доктор биологических наук, доцент;

Анатолий Иосифович Соколик, доцент кафедры клеточной биологии и биоинженерии растений Белорусского государственного университета, кандидат биологических наук, доцент

РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:

Кафедрой клеточной биологии и биоинженерии растений Белорусского государственного университета (протокол № 23 от 24 февраля 2015 г.);

Научно-методическим советом Белорусского государственного университета (протокол N_2 6 от 29 июня 2015 г.)

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Системная биология — активно развивающаяся междисциплинарная область науки, образовавшаяся на стыке биологии и теории сложных систем, которая анализирует сложные биологические системы с учетом их многокомпонентности, наличия прямых и обратных связей, а также разнородности экспериментальных данных. Основное внимание в системной биологии уделяется свойствам биологических систем, которые невозможно объяснить только с точки зрения свойств ее компонентов. Таким образом, задачами системной биологии являются исследование и моделирование свойств сложных биологических систем, которые нельзя объяснить суммой свойств ее составляющих. Предметом исследований в этой области являются, например, система регуляции генов, метаболизм, а также клеточная динамика и взаимодействия в клеточной популяции.

Основным инструментом в системной биологии является моделирование, которое используется как для анализа и интегрирования экспериментальных данных, так и для предсказаний поведения системы в условиях, отличных от экспериментальных.

Из-за сложности объекта изучения, большого количества параметров, переменных и уравнений, описывающих биологическую систему, современная системная биология невозможна без использования компьютерных технологий. Компьютеры используются для решения систем нелинейных уравнений, изучения устойчивости и чувствительности системы, определения неизвестных параметров уравнений по экспериментальным данным.

Многие методы и подходы теоретической системной биологии могут напрямую использоваться для практических задач фармакологии и биоиндустрии. В частности, если необходимо количественно описать и предсказать поведение сложной метаболической или клеточной системы, либо оптимизировать ее функционирование, системно-биологическая модель становится единственной альтернативой затратному случайному перебору с использованием сложных экспериментальных методик.

Целью преподавания дисциплины «Введение в системную биологию» является начальное знакомство студентов с современными направлениями исследований в биологии, использующими методы математического моделирования и биоинформатики, формирование представлений о биологических процессах и явлениях как о взаимосвязанной системе, о теоретических и вычислительных методах исследования биологических систем различного рода, знакомство с некоторыми классическими примерами математических моделей биологических процессов, отражающих характерные особенности биологических процессов и демонстрирующих эффективность использования математических моделей для понимания механизмов функционирования биологических систем.

Преподавание курса в значительной мере базируется на использовании современной компьютерной техники и программного обеспечения, а также на знаниях, полученных студентами в результате изучения учебной дисциплины «Выс-шая математика».

Задачами курса являются:

- формирование у обучающихся целостного представления о системном подходе в биологии, его содержании, возможностях и методах использования;
- знакомство с основными типами биологических систем, их характеристиками, особенностями данных о биосистемах;
- получение представлений о базовых понятиях и операциях по первичной обработке и анализу данных, об основных видах анализа;
- знакомство с моделированием в биологии, видами моделирования, его возможностями;
- знакомство с рядом различных и наиболее часто используемых приемов моделирования сложных биологических систем;
- знакомство с классическими моделями в биологии и демонстрация значения математического и компьютерного моделирования для понимания природы биологических процессов и функционирования биологических систем;
- представление о способах обработки и использования больших массивов биологической информации и предназначенных для этого программных средствах;
- развитие навыков эффективного использования методов системной биологии, построения моделей биологических систем для анализа данных биологических и экологических исследований, получения биологически значимой информации;
- формирование мотивации к самостоятельным исследованиям в области системной биологии.

Полученные в результате прохождения курса знания и навыки необходимы студентам для успешного выполнения учебной научно-исследовательской работы, прохождения учебной и производственных практик по специальности и специализации, а также освоения курсов специализации. Учебная программа составлена с учетом межпредметных связей и программ по смежным дисциплинам биологического профиля «Экология и рациональное природопользование», «Физиология человека и животных», «Биохимия», «Молекулярная биология», «Основы информационной биологии».

В результате прохождения курса обучаемый должен:

знать:

- основные принципы системного подхода в биологии, типы биологических систем, их характеристики;
- особенности биологической информации, виды и способы ее анализа;

- принципы построения моделей биологических систем, типы моделей, их особенности;
- основные виды математических моделей, способы их построения и исследования;
- специфику получения биологической информации из больших массивов данных, существующие для этого средства;

уметь:

- проводить первичное редактирование и анализ биологических данных;
- использовать простейшие описательные регрессионные модели;
- использовать известные кинетические модели биологических процессов;
- составлять на основе соответствующего математического аппарата простые кинетические модели;

владеть:

- научной терминологией данного раздела науки;
- устойчивыми навыками рационального использования методов первичного анализа биологической информации;
- базовыми навыками и умениями применения адекватного математического аппарата для построения моделей биологических систем.

Изучение учебной дисциплины «Введение в системную биологию» должно обеспечить формирование у студента следующих компетенций:

- АК-1. Уметь применять базовые научно-теоретические знания для решения теоретических и практических задач.
 - АК-3. Владеть исследовательскими навыками.
 - АК-4. Уметь работать самостоятельно.
 - АК-6. Владеть междисциплинарным подходом при решении проблем.
- ПК-2. Осваивать новые модели, теории, методы исследования, участвовать в разработке новых методических подходов.
- ПК-3. Осуществлять поиск и анализ данных по изучаемой проблеме в научной литературе, составлять аналитические обзоры.
- ПК-4. Готовить научные статьи, сообщения, рефераты, доклады и материалы к презентациям.
- ПК-7. Осуществлять поиск и анализ данных по изучаемой проблеме в научно-технических и других информационных источниках.

Преподавание курса осуществляется по блочно-модульному принципу с выделением 5 основных блоков: І. Введение. ІІ. Предмет системной биологии — биологические системы. ІІІ. Моделирование — основной метод изучения биологических систем IV. Базовые модели в биологии V. Примеры моделирования сложных биологических систем.

При чтении лекционного курса необходимо применять наглядные материалы в виде табличных схем, а также использовать технические средства обучения для демонстрации компьютерных презентаций, слайдов и видеоматериалов.

Лабораторные занятия следует проводить в компьютерном классе, подключенном к сети Интернет и в аудитории.

В соответствии с учебными планами дневной формы получения образования программа рассчитана максимально на 150 часов, из них аудиторных 66 часов. Распределение по видам занятий: лекции — 20 часов, лабораторные занятия — 40 часов, аудиторный контроль управляемой самостоятельной работы — 6 часов.

В соответствии с учебными планами заочной формы получения образования программа рассчитана максимально на 150 часов, из них аудиторных 18 часов. Распределение по видам занятий: лекции — 10 часов, лабораторные занятия — 8 часов.

Форма текущей аттестации по учебной дисциплине – экзамен.

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

І ВВЕДЕНИЕ

Понятие «системная биология», различные его трактовки и содержание, место среди других приложений к биологии математики, информационных технологий и компьютерной техники. Биоинформатика, компьютерная геномика, компьютерная биология, математическая биология.

Системная биология. История, этапы развития системной биологии. Моделирование систем — основной подход системной биологии. Анализ сложных систем с большими массивами данных.

Основа системной биологии — математика: применение математических подходов и методов в биологии. Скалярные и векторные величины, матрицы. Алгебраические уравнения и их системы, обыкновенные дифференциальные уравнения, их системы, уравнения с частными производными.

II. ПРЕДМЕТ СИСТЕМНОЙ БИОЛОГИИ – БИОЛОГИЧЕСКИЕ СИСТЕМЫ

Определение системы, классификация систем: линейные-нелинейные, живые-неживые. Системный подход в биологии, биологические системы, их особенности, корпускулярные и жесткие системы, уровни организации.

Изучение систем. Параметры систем. Примеры и характеристики параметров биосистем (живых и неживых), получаемых при изучении систем. Изменчивость параметров — неотъемлемое свойство живых систем. Особенности экспериментальных данных в биологии. Необходимость статистической обработки данных, полученных для живых систем, начиная с уровня клетки. Примеры: рентген-структурный анализ, конформационные расчеты структуры молекул, метод молекулярной динамики. Примеры анализа биологической информации и применения компьютерной техники в биологии (Программный пакет BLAST, 3D-печать - биопринтинг).

III. МОДЕЛИРОВАНИЕ – ОСНОВНОЙ МЕТОД ИЗУЧЕНИЯ БИОЛОГИЧЕСКИХ СИСТЕМ

Методы изучения биологических систем. Основной метод – построение моделей. Первичный анализ и обработка данных – статистика: базовые понятия и методы обработки экспериментальных данных. Первичный анализ и обработка данных с применением методов статистики: базовые понятия и операции обработки экспериментальных данных. Распределения. Оценка сильно отклоняющихся вариант. Средняя. арифметическая, ошибка средней величины, достоверность – критерий Стьюдента. Мера варьирования величины – дисперсия, коэф-

фициент вариации. Оценка репрезентативности выборки. Виды анализа: дисперсионный, корреляционный, регрессионный, кластерный анализ. Примеры работы с биологическими данными.

Модели в биологии. Моделирование вообще и биологических систем в частности. Исторически первые модели в биологии. Возможности моделей. Виды моделей. Имитационные и математические модели. Примеры. Простейший математический аппарат, используемый для построения моделей (математические функции, линеаризация, регрессия, метод наименьших квадратов, глобальный минимум). Физические модели. Примеры: аквариум, водная культура наземных растений, выделенные хлоропласты, бислойная липидная мембрана, популяция дрозофилы. Абстрактные модели. Имитационные и математические модели.

Имитирование поведения системы — важность для практических целей. Основные этапы построения имитационной модели. Примеры имитационных моделей: систем организма (почек и т.д.), продукционного процесса растений, водных экосистем, глобальной динамики.

Математическое моделирование позволяет установить законы функционирования биосистем. Этапы математического моделирования.

III МОДЕЛИРОВАНИЕ БИОЛОГИЧЕСКИХ СИСТЕМ, ОСНОВНЫЕ ПОНЯТИЯ, ВИДЫ МОДЕЛЕЙ

Модели в биологии. Моделирование вообще и биологических систем в частности. Возможности моделей. Виды моделей. Простейший математический аппарат, используемый для построения моделей: математические функции (линейная, экспоненциальная, логарифмическая, логистическая), линеаризация, регрессия, метод наименьших квадратов, глобальный минимум.

IV БАЗОВЫЕ МОДЕЛИ В БИОЛОГИИ

Принципы построения математических моделей. Базовые модели.

Примеры. Популяционная модель (экспоненциальная — неограниченный рост численности популяции, логистическая — ограниченный рост). Уравнения неограниченного и ограниченного роста. Критические уровни численности. Дискретная модель популяции с неперекрыващимися поколениями. Колебания численности популяции.

Кинетика ферментативных реакций. Основные положения модели. Уравнение Михаэлиса-Ментен для наиболее простой реакции. Математическое представление модели, варианты линеаризации. Использование модели для анализа реакции. Ингибирование. Модель Моно. Применение системно- фармакологического моделирования в процессе разработки новых лекарственных препаратов.

Устойчивые и неустойчивые состояния системы. Анализ уравнения системы на устойчивость методом Ляпунова. Верификация и валидация моделей.

V. ПРИМЕРЫ МОДЕЛИРОВАНИЯ СЛОЖНЫХ БИОЛОГИЧЕСКИХ СИСТЕМ

Модель возбудимой мембраны Ходжкина-Хаксли. Мембранный потенциал, его возникновение, количественное описание уравнением Гольдмана-Ходжкина-Каца. Проницаемость и проводимость мембраны. Ионные каналы. Потенциал действия, изменения ионной проводимости. Калиевая и натриевая проводимости, уравнения для их изменения. Свойства модели: порог возбуждения, рефрактерность, периодиность генерации потенциалов действия.

Мембранная модель накопления катионов в растительной клетке. Система механизмов ионного транспорта на плазматической мембране: избирательные и неизбирательные ионные каналы, электрогенный ионный насос. Функциональная эквивалентная схема системы. Локальная неоднородность мембраны, ее учет в модели. Верификация модели.

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

(дневная форма получения образования)

	(дневная форма получения ооразования)							
			Количество аудиторных часов					
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
1	2	3	4	5	6	7	8	9
I	Введение							
1.	Понятие «системная биология», различные его трактовки и содержание, место среди других приложений к биологии математики, информационных технологий и компьютерной техники.	2						
II	Предмет системной биологии – биологические системы						2	Промежуточный зачет (письменная контр. работа)
2.	Определение системы, классификация систем: линейные-нелинейные, живые-неживые. Системный подход в биологии, биологические системы.	2						
3.	Изучение систем. Параметры систем.	2						
III	Моделирование – основной метод изучения биологических систем						2	Промежуточный зачет (письменная контр. работа)
4.	Методы изучения биологических систем. Первичный анализ и обработка данных.	2			8			
5.	Модели в биологии.	2			8			
IV	Базовые модели в биологии						2	Промежуточный зачет (письменная контр. работа)
6.	Принципы построения математических моделей. Базовые модели в биологии.	2			4			
7.	Примеры базовых моделей.	2			8			
V	Примеры моделирования сложных биологических систем							

1	2	3	4	5	6	7	8	9
8.	Модель возбудимой мембраны Ходжкина-Хаксли. Мембранный потенциал, его возникновение, количественное описание уравнением Гольдмана-Ходжкина-Каца	2			4			
9.	Проницаемость и проводимость мембраны. Ионные каналы. Потенциал действия, изменения ионной проводимости. Калиевая и натриевая проводимости, уравнения для их изменения. Свойства модели: порог возбуждения, рефрактерность, периодичность генерации потенциалов действия.	2			4			
10.	Мембранная модель накопления катионов в растительной клетке	2			4			

УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА УЧЕБНОЙ ДИСЦИПЛИНЫ

(заочная форма получения образования)

		Количество аудиторных часов						
Номер раздела, темы	Название раздела, темы	Лекции	Практические занятия	Семинарские занятия	Лабораторные занятия	Иное	Количество часов УСР	Форма контроля знаний
I	Введение							
1.	Понятие «системная биология», различные его трак-	2						
	товки и содержание, место среди других приложений к биологии математики, информационных технологий и компьютерной техники.							
II	Предмет системной биологии – биологические системы							
2.	Определение системы, классификация систем: линейные-нелинейные, живые-неживые. Системный подход в биологии, биологические системы.	2						
3.	Изучение систем. Параметры систем.	2						
III	Моделирование – основной метод изучения биоло- гических систем							
4.	Методы изучения биологических систем. Первичный анализ и обработка данных.	2			4			
5.	Модели в биологии, базовые модели.	2			4			_

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

ЛИТЕРАТУРА

Основная:

- 1. Ризниченко Г. Ю. Лекции по математическим моделям в биологии. Часть 1. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2002. 232 с.
- 2. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математические модели в биофизике. Введение в теоретическую биофизику. 2-е изд. Доп. Москва-Ижевск: Институт компьютерных исследований, 2004. 472 с.
- 3. Рубин А.Б. Биофизика. Том. 1-2. М.:, 1987.
- 4. Рубин А.Б., Пытьева Н.Ф., Ризниченко Г.Ю. Кинетика биологических процессов. Учебное пособие. Изд-во МГУ, 1977. 330 с.

Дополнительная:

- 1. Бэгшоу К. Мышечное сокращение. М.: Мир. 1985.
- 2. Вольтерра В. Математическая теория борьбы за существование. М., 1976.
- 3. Дещеревский В.И. Математические модели мышечного сокращения. М: Наука, 1977.-160 с.
- 4. Романовский Ю.М., Степанова Н.В., Чернавский Д.С. Математическая биофизика. М., Наука, 1984, 304 с.
- 5. Рубин А.Б. Биофизика клеточных процессов. М.: Высш. школ., 1987. 303 с.
- 6. Computational Cell Biology / editors C. Fall et al. Springer-Verlag, New York Inc. $-\,2002-469$ p.
- 7. Keener J., Sneyd J. 1998. Mathematical Physiology. New York: Springer. 766 p.
- 8. Murray J.D. 2001. Mathematical Biology. I. An Introduction. / J.D. Murray. 3-d edition. Springer. P. 551.

Электронные ресурсы

- 1. Информационная система "Динамические модели в биологии" / Московский государственный университет им. М.В.Ломоносова, биологический факультет, кафедра биофизики. http://www.dmb.biophys.msu.ru/
- 2. Ризниченко Г.Ю. Математическое моделирование в биологии. Биология Математическая Популяционная динамика Экология математическая. http://www.library.biophys.msu.ru/MathMod/

ПЕРЕЧЕНЬ КОНТРОЛЬНЫХ МЕРОПРИЯТИЙ УПРАВЛЯЕМОЙ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Промежуточные зачеты по разделам «Предмет системной биологии – биологические системы», «Моделирование – основной метод изучения биологических систем», «Базовые модели в биологии»

ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ СРЕДСТВ ДИАГНОСТИКИ РЕЗУЛЬТАТОВ УЧЕБНОЙ ДЕЯТЕЛЬНОСТИ СТУДЕНТОВ

В качестве формы итогового контроля по дисциплине используется экзамен. Оценка учебных достижений студента на экзамене производится по десятибалльной шкале.

Для оценки профессиональных компетенций студентов используется следующий диагностический инструментарий:

- устные и письменные опросы на лабораторных занятиях;
- проверка ведения лабораторных записей;
- защита индивидуальных заданий при выполнении лабораторных работ;
- защита подготовленного студентом реферата;
- письменные контрольные работы по отдельным темам курса;
- компьютерное тестирование.

ПЕРЕЧЕНЬ ЛАБОРАТОРНЫХ ЗАНЯТИЙ Дневная форма получения образования

- 1. Редактирование данных биологического эксперимента, представление их (графики и таблицы) (4 часа).
- 2. Описание результатов эксперимента математическими функциями различного вида. Проверка гипотезы (4 часа).
- 3. Кинетические модели. Ферментативная кинетика (4 часа).
- 4. Линеаризация функций. Методы линеаризации, практические примеры: калибровочная кривая, экспонента, уравнение ферментативной кинетики. (4 часа).
- 5. Использование разных вариантов графика Михаэлиса-Ментен для интерпретации данных. (4 часа).
- 6. Модели роста популяций: неограниченный рост, модель Ферхюльста (логистический рост). Анализ стационарных состояний. Модель ограниченного роста популяции при различном уровне начальной численности (4 часа).
- 7. Примеры моделирования сложных биологических систем (4 часа).
- 8. Биологические мембраны. Мембранный потенциал, уравнение Гольдмана-Ходжкина-Каца (4 часа).
- 9. Модель возбудимой мембраны Ходжкина-Хаксли (4 часа).

10. Мембранная модель накопления катионов в растительной клетке (4 часа).

Заочная форма получения образования

- 1. Редактирование данных биологического эксперимента, представление их в программе *Excel* (таблицы, графики) (4 часа).
- 2. Описание результатов эксперимента математическими функциями различного вида. Проверка гипотезы (4 часа).

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Для организации самостоятельной работы студентов по учебной дисциплине рекомендуется использовать современные информационные технологии: разместить в сетевом доступе комплекс учебных и учебно-методических материалов (программа курса, учебно-методический комплекс, методические указания к лабораторным занятиям, задания в тестовой форме, темы рефератов, список рекомендуемой литературы и информационных ресурсов и др.).

Для общей оценки качества усвоения студентами учебного материала предлагается использование рейтинговой системы.

МЕТОДИКА ФОРМИРОВАНИЯ ИТОГОВОЙ ОЦЕНКИ

Учебными планами в качестве формы итогового контроля по учебной дисциплине рекомендован экзамен. Оценка учебных достижений студента на экзамене производится по десятибалльной шкале.

Итоговая оценка (минимум 4, максимум 10 баллов) определяется по формуле:

Итоговая оценка = $A \times 0.3 + B \times 0.7$, где A — средний балл по лабораторным занятиям и УСР, B — экзаменационный балл

Итоговая оценка выставляется только в случае успешной сдачи экзамена (4 балла и выше).

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ УВО

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в содержа-	кафедрой, разрабо-
дисциплины,		нии учебной программы	тавшей учебную
с которой		учреждения высшего	программу (с ука-
требуется со-		образования по учебной	занием даты и
гласование		дисциплине	номера протокола)1
1. Экология и	Общей	Отсутствуют	Утвердить согласо-
рациональное	экологии и	Зав. кафедрой	вание
природополь-	методики		протокол № 23 от
зование	преподава-	В.В. Гричик	24 февраля 2015 г.
	ния биоло-		
	гии		
2. Физиология	Физиоло-	Отсутствуют	Утвердить согласо-
человека и	гия челове-	Зав. кафедрой	вание
животных	ка и жи-		протокол № 23 от
	вотных	А.Г. Чумак	24 февраля 2015 г.
3. Биохимия	Биохимии	Отсутствуют	Утвердить согласо-
		Зав. кафедрой	вание
			протокол № 23 от
		И.В. Семак	24 февраля 2015 г.
4. Молеку-	Молеку-	Отсутствуют	Утвердить согласо-
лярная биоло-	лярной	Зав. кафедрой	вание
РИЯ	биологии		протокол № 23 от
		А.Н. Евтушенков	24 февраля 2015 г.
5. Основы	Зоологии	Отсутствуют	Утвердить согласо-
информаци-		Зав. кафедрой	вание
онной биоло-			протокол № 23 от
ГИИ		С.В. Буга	24 февраля 2015 г.

дополнения и измене	НИЯ К УЧЕБНОЙ ПРОГРАММЕ УВО
на	/ учебный гол

NoNo	Дополнения и	изменения	Основание
ПП			
		_	
	1 1	1	а на заседании кафедры клеточной
биоло		растений (прото	кол № 23 от 24 февраля 2015 г.)
	(название кафедры)		
Завелг	ующий кафедрой		
завед.	угощий кафодрой		В.В. Демидчик
(ученая	степень, ученое звание)	(подпись)	(И.О.Фамилия)
УТВЕ	РЖДАЮ		
Декан	факультета		
•	- ·		В.В. Лысак
(ученая	степень, ученое звание)	(подпись)	(И.О.Фамилия)