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1. Introduction

The basic computational concepts of
classical, operational and regularization
approaches to quantitative processing the
numerical information of the measuring regression
experiments have been discussed in [1]. All
related information in [1] was given in a brief
concise form. In particular, only four distinctive
features in operational quantitative processing of
numerical information were mentioned. Namely,

i) The main problem of a measuring
regression experiment is the investigation of the
dependence of a given object characteristic y on a
fixed characteristic x. In other words, it is required
first to determine the experimental dependence
{yn, xn} and then for a given approximative
function F (A, x) to find the value of vector
parameter A within an error δA where yn is n-
th value of dependent variable, measured within
error εn, xn is n-th fixed value of independent
variable x ({xn} is an experiment realization).
Thus, it is assumed initially that (a) the value
of the dependent variable is given within some
fixed error εn; (b) the vector parameter A is to
be determined on the experimental dependence
{yn, xn} within some fixed error δA or, in other
words, in this problem the point estimation of
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vector parameter A is initially replaced on the
interval estimation.

ii) The operational data analysis model is
distinguished from the classical one y = F (A,
x)+e by the presence of a measuring function g(y)

yn = g(F (A, xn) + en) (1)

where the function g in (1) is necessary to show
that n-th value of dependent variable is measured
within some error εn, {en} is some noise of the
experiments.

iii) If εn = ε for any n, then the measurement
function g coincides with the truncation function

gα(y) = 2α[y/(2α)] + 2α
if |y − 2α[y/(2α)]| ≥ α,
else gα(y) = 2α[y/(2α)]

(2)

where the value of α = ε, [b] means the integer
part of b.

iv) For the measurement function (2),
analytical (operational) solutions of the main
fitting problems (see point (i)) can be found by
the algorithm

1. Find the minimum value α = αmin as a
solution of the extreme problem

min
α

max
U

max
n

|yn − gα(y
′
n)|

where y′n is an estimate of n-th value of the
dependent variable y, the maximum on U means
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the search for a solution on all U sets of {xU},
composed of N, . . . , N−n0 readings, n0 is a given
integer number, which assigns the maximum level
of truncating the initial data array {yn, xn}.

2. Construct a set of equivalent analytical
functions gα(F ({Pmi(C

′
i, ξ)}, x) where α = αmin

and Pmi(C
′
i, ξ) are some polynomials of degree mi

with the variable of ξ (|ξ| < 1 or |ξ|≤ 1) and the
vector parameters of Ci.

3. Compute the value of variance δA′ by
assigning the extreme values of the parameter ξ in
the function Fa(A

′(ξ), x) = F ({Pmi(C
′
i, ξ)}, x).

In the next sections the minimal set
of concepts and methods of the operational
regression theory is significantly expanded, three
levels of difficulty in operational quantitative
analyzing the results of the real measuring
regression experiments are determined and the
implementation of all three levels into some real
magnetochemical experiments, devoted to the
study of the magnetic behavior of weak magnetic
solid solutions with 3d-ions versus temperature, is
demonstrated.

2. Expanding the minimal set of
concepts and methods of the operational
regression theory

2.1. Planning of the measurement
process

The measurement experiment, defined in
Section 1, shall be called

a) an active one, if
i) it is possible to plan the measurement

process for this experiment,
ii) the experiment is realized with taking a

heed of the measurement process planning results;
b) a passive one, if the experiment is realized

without taking a heed of the measurement process
planning results.

The words “planning of the measurement
process” mean an imitation computation
procedure, by which for fixed

a) value of vector parameter A = Atrue,
b) experiment realization {xn},

c) estimation method
one is able to find such a maximum value εmax,
that, if the values of dependent variable in the
data array {yn, xn} are measured within an error
εmax, then it is still possible to determine the
value of the vector parameter A within a given
error δA where yn = gεmax(F (Atrue, xn)).

If the error δA is not set, then as a value
of εmax one can select the largest error max

n
(εn)

where εn is determined in Section 1.

2.2. Searching for a set of optimal
estimation methods

Before beginning any active measuring
experiment, let one find {ε(q)max} (see Section 2.1)
for a set of estimation methods having numbers
q = 1, . . . , Q and ε∗ = max

q
(ε

(q)
max). In this case one

forms a set of best estimation methods from the
methods with ε

(q)
max = ε∗. Any estimation method

included in the mentioned set of best methods
shall be called optimal.

2.3. Determining the contamination
level of the initial data array

As a rule, full control of the operational
situation of a measurement experiment is
impossible in practice. For this reason, even
for an active measurement experiment, nobody
can ensure that the contamination level in the
initial data array {yn, xn} does not exceed the
permissible value εmax (see Section 2.1). For
determination of the contamination level of the
dependent variable in the initial data array
{yn, xn}, it is suggested to use virtual device
(VD) method, mentioned in point 1 of the
corresponding algorithm from the Section 1.

It should be noted that
a) since the value αmin is determined by VD-

method from the worst suitable variant, the value
αmin is directly proportional to the value max

n
|en|

in (1) and, consequently, one can indeed estimate
the contamination level of the dependent variable
in the initial data array {yn, xn} by the value
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αmin;
b) due to the interpretation of the

contamination level of the dependent variable in
the initial data array {yn, xn}, which is given in
the point (a), it is evident that for determination
of the discussed contamination level one can also
use some methods, elaborated in the frame of the
“guaranteed approach” to solving approximative
problems [2–5].

2.4. Classification of active measurement
experiments and their properties

An active measurement experiment is
i) a precision if

αmin ≤ εmax. (3)

In this case the determination of the values A′

within an error δA can be made on any subset
of {xi}, contained not less than M + 1 different
elements of {xn} where M is the dimension of the
vector parameter A of the approximative function
g(F (A, x)) (see (1));

ii) a local non-precision if it is precision only
on a truncated sets {xi} ⊂ {xn} and the number
of elements in {xi} exceeds M +1. Thus, one can
simply bring this case to the case (i) by deleting
all outliers from the initial array {yn, xn};

iii) a global non-precision if the number of
elements in {xi} (see point (ii)) does not exceed
M + 1. In this case one must solve tasks on
revealing the parameters values of the (global)
inadequate fitting models F (A, x). This task is
solved if one can find new fitting models G(B, x)
for which the condition αmin ≤ εmax is satisfied
[6].

This classification system (see points (i)-
(iii) and Figure 1) clearly reflects all three
levels of difficulty in operational quantitative
analyzing the results of real measuring regression
experiments. The bottom right rectangle is
marked in Figure 1 with Greek letter “Θ” because
it is the only case when, by using the methods
of the operational regression theory, one can not
extract any useful information from the initial
data array {yn, xn}.

FIG. 1. Levels of computational difficulty in the
operational regression.

2.5. Testing the adequacy of
approximative models

It is suggested to use the condition (3)
as a test of adequacy of the approximative
function g(F (A, x)). Indeed, the condition (3)
is connected with the concept of the “precision
experiment” that is equivalent to the concept
of the “best even-approximating function”, used
in approximation theory [7–9] and, accordingly,
the concept of “inadequacy of approximative
function” g(F (A, x)) does not disagree with the
same concept, accepted in design experiment and
regression analysis theories [10–12].

2.6. Set of equivalent approximative
functions

“In practice, as the rule, neither prior
information about the probability nature of
processed data, nor the knowledge of physical
mechanism of investigated phenomenon do not
give us, just the same, enough arguments, by
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which one could establish rigorously the choice
of some model or other. . .” [13].

Continuous on interval [xmin, xmax]
analytical functions g(F1(A1, x)) and
g(F2(A2, x)) shall be called equivalent
approximative functions, if for any xi of {xn}

gα(F1(A
′
1, xi)) = gα(F2(A

′
2, xi)) (4)

where xmin and xmax are respectively minimum
and maximum values of the independent variable
x on the experiment realization {xn}, A′

1 and A′
2

is some estimates of the vector parameters A1 and
A2; gα(y) is a measurement function (2).

3. Different implementations of
three computational levels in some real
magnetochemical experiments

Magnetochemistry is a branch of physical
chemistry that examines the interrelationship
between a magnetic field and different
paramagnetic ions embedded in diamagnetic
structures [14–16].

3.1. Operational modification of the
Curie and Curie–Weiss laws

According to [14–17], experimental
temperature dependencies of the specific
magnetic susceptibility χ for magnetically dilute
solid solutions, containing 3d ions, obey the
Curie F1 = C/T or Curie–Weiss F2 = C/(T − θ)
laws where T is the temperature, K; θ is the
Weiss constant, K; C is the Curie constant, the
value of which is proportional to the square of an
effective magnetic moment of a 3d ion.

However, Fi-models are inadequate if
a) χ = χ0 + Fi where i = 1, 2,

χ0 is a temperature independent part of the
specific magnetic susceptibility that consists of
the structure diamagnetism and paramagnetism
of Van Vleck and Pauli;

b) investigated samples are magnetic
heterogeneous.

Let us discuss some advantages of modified
models F ∗

i = χ0 + Fi.

i) If χ0 ̸= 0 then using models F ∗
i allows to

avoid the “global non-precision” situations in real
magnetochemical experiments with magnetically
dilute solid solutions.

ii) In real magnetochemical experiments
[18–28] an inconsistent parametric approach is
used to determine the value of χ0. The essence
of this approach is to calculate values of χ0

by using some tables containing information
about the contribution to value χ0 of each
individual element forming the chemical formula
of the solid solution. Obviously, the inconsistent
parametric approach goes beyond the operational
approach to conducting scientific experiments,
as it ignores the following two operational
requirements: (a) main experimental information
must be obtained only within the confines of a
given experiment, (b) all operational conditions
of a given experiment should be included into
approximation (theoretical) models as some
parameters or functions [29–33]. Since models F ∗

i

satisfy simultaneously both conditions (a) and
(b), the use of models F ∗

i are more preferable
compared with models Fi. It is naturally
assumed in this case that quantitative processing
experimental arrays {χn, Tn} is carried out by
techniques of operational regression theory (see
Sections 1, 2).

iii) For more than 70 years, the
representation of experimental dependencies
χ(T ) of magnetically diluted systems is
made by diagrams 1/χ–T . And, for many
investigated weak magnetic materials, a set of
kinks or significant deviations from the linear
dependencies 1/Fi (i = 1, 2) are observed in these
diagrams [18–28].

It is generally known, that alignment of
a curvilinear part of the dependence 1/χ(T ) is
often successful by subtracting the temperature-
independent term χ0 from the experimental
dependence {χn, Tn}. Discussion of the physical
sense of the constant χ0 for a set of metals,
alloys and magnetic diluted systems one can
find in [34, 35]. But still it is not clear how
to process and interpret experimental curves
1/χ(T ) with a set of kinks. In the discussed sort
of physical-chemical experiments, the presence
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of a set of kinks on diagrams 1/χ–T is often
connected with changing the type of exchange
interactions between paramagnetic ions or with
manifesting some phase transitions, and analyzing
magnetic behavior of weak magnetic substances
is usually carried out separately for low and high
temperature regions of the dependencies 1/χ(T )
with using models Fi. This approach may not be
acceptable, so in 1940 B. Cabrera had established
(see [22]) that for many salts a set of kinks on
diagrams 1/χ–T passes into nothingness, when
F2 fitting models were replaced by F ∗

2 ones.
To support B. Cabrera’s idea, let us prove the
correctness of the following Proposition 1.

Proposition 1. For magnetically homogeneous
diluted systems, a set of kinks on diagrams
1/χ–T has no relation to any real physical
phenomena, but it connects with a complex of
operational errors, which are an integral part of
the considered type of experiments. In particular,
it connects with wrong decomposition of measured
values {χn} on temperature-dependent (F2) and
temperature-independent (χ0) parts, measuring
errors εn (see Sections 1, 2) and the discreteness
of measurements.

Proof If the structural formula of a substance
is wrong or the correction on temperature-
independent paramagnetism contributes
significantly to the value of χ then using
the inconsistent parametric approach (see point
(ii)) gives the dependency

1/(χ+ χ
(calc)
d ) = 1/(χpd + F2) (5)

on diagram 1/χ–T instead of the temperature-
dependent part, obeyed Curie–Weiss law where
χ is an experimental dependence of the specific
magnetic susceptibility (χ = {χn}); χ

(calc)
d is a

calculated amount of the diamagnetic corrections
from each atom of the chemical formula of
the solid solution; χpd is an unaccounted parts
of corrections on temperature-independent para-
and diamagnetism of the solid solution.

If χpd is a non-zero constant then, using
mathematical analysis methods, it is easy to
prove, that the curve (5) is continuous and smooth

at all values T except for the value Tcr = θ −
C/χpd, and character of its concavity depends
on a sign of the constant χpd. Consequently,
for the discussed experiments, if χpd ̸= 0 then
some monotone concavo or convex curves will
be shown on the diagram 1/χ–T . To finish
the proof it remains to add, that it is always
possible to approximate any monotone curvilinear
dependence, determined on a discrete set of {Tn}
within a given error, by a set of lines with kinks,
except for the single case when χpd = 0 and the
simple linear dependence 1/χ = (1/C)T − (θ/C)
is shown on the diagram 1/χ–T . �

To demonstrate the practical importance
of Proposition 1, let us compare “the authors
interpretations” of curves 1/χ(T ) for solid
solutions LaMeO3 – LaAlO3 (Me = Ti, Mn,
V, Fe) investigated in [20, 21, 24] with the
proved results about the connection of a set
of kinks on diagrams 1/χ–T with the presence
of a temperature-independent magnetism in
dependencies χ(T ). The mentioned dependencies
are shown in Figure 2(a, b, c, d) where χpara

Me
is the paramagnetic component of the specific
magnetic susceptibility for systems LaMeO3 –
LaAlO3 (Me = Ti, V, Mn, Fe). Namely, (a) —
LaTixAl1−xO3 (x = 0.077 (1); 0.111 (2)); (b) —
LaVxAl1−xO3 (x = 0.023 (1); 0.041 (2); 0.080 (3));
(c) — LaMnxAl1−xO3 (x = 0.009 (1); 0.059 (2);
0.113 (3)); (d) — LaFexAl1−xO3 (x = 0.011 (1);
0.033 (2); 0.066 (3)). For all listed solid solutions,
experimental arrays of {χn, Tn} are given in [36].

1) As it is stated in [20, 21, 24]
“solid solutions LaMeO3 – LaAlO3 (Me = Ti,
Mn) are characterized by the presence of a
temperature-independent magnetism in magnetic
susceptibility”. Comparing this explanation of all
curves on diagrams (a) and (c) (see Figure 2),
with one of the proved statement we may conclude
that both explanations are identical.

2) By comparing curves on diagrams (b)
and (d) with curves on diagrams (a) and (c), the
authors of [20, 21, 24] conclude, that in distinction
from systems, listed in point 1, “for solid solutions,
containing LaVO3 and LaFeO3, a kink is observed
on curves 1/χ(T ). In solid solutions LaVO3 –
LaAlO3 (see diagram (b)), this kink can be
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FIG. 2. Dependencies 1/χpara
Me (T ) for solid solutions

LaMeO3 – LaAlO3

explained by partial withdrawal of exchange
interactions of antiferromagnetic type between
vanadium atoms. In solid solutions LaFeO3 –
LaAlO3 (see diagram (d)) the position of the
kink points and angles between high and the
low temperature of the straight lines depends on
the solution composition. . . One may reasonably
assume that, at increasing concentrations of
LaFeO3, not only character but a sign of exchange
between iron atoms is also changed”.

In reality (see the proof of Proposition 1)
α) From the graphical information,

presented in Figure 2, one can not see any
difference between curves on diagrams (b) and
(d) and curves on diagrams (a) and (c). Namely,
in all these cases curves may be presented as
dependencies 1/χ(T ) with kinks. Thus, no one
can say with the authors of [20, 21, 24] that the

distinction between curves on all four diagrams
(see Figure 2) is a symptom of “the internal
periodicity of the magnetic properties of solid
solutions” LaMeO3 – LaAlO3 (Me = Ti, V, Mn,
Fe).

β) For the system LaVxAl1−xO3 (x=
0.041), curves of 1/(χ + χ2)(T ) are shown in
Figure 3(a, b, c) where χ2 is equal 0.5, 0.094 and
−0.1 respectively for the diagrams (a), (b) and
(c).

FIG. 3. Dependencies 1/(χ+χ2)(T ) for solid solution
LaVxAl1−xO3 (x = 0.041).
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Analysis of these three graphs allows us to
conclude that dependencies, shown in Figure 2(b,
d), have the same simple explanation as one in the
proved Proposition, and, consequently, different
interpretations, which are given in [20, 21, 24]
for curves 1/χ(T ) of solid solutions LaMeO3 –
LaAlO3 (Me = V, Fe), are incorrect.

Since the temperature dependence of many
physical properties of solids (eg, magnetic and
electrical susceptibility, conductivity, dielectric
constant, thermal expansion coefficient, etc.) obey
the Curie–Weiss law, the scope of Proposition 1
is much wider than that provided in this item.
In particular, experimental curves with a set of
kinks are given in [37] — the logarithm of the bulk
conductivity, in [38] — the electrical susceptibility,
in [39] — the specific conductivity.

iv) In this item a set of experimental arrays
of {χn, Tn}, investigated in [19, 20, 21, 24, 28] for
weak magnetic systems MexAl1−xO1.5 (Me = V),
LaMexAl1−xO3 (Me = V, Fe), LaSrMexAl1−xO4

(Me = Fe) and YCaMexAl1−xO4 (Me = Fe)
are tested by VD-method (see Section 2.3). For
all listed solid solutions, experimental arrays of
{χn, Tn} are given in [36].

The obtained computational results are
adduced in Table 1. In Table 1, k is the
serial number of the analyzed data array, x
is concentration of Me in the analyzing solid
solution with number k, mole fractions; N
is the general number of readings in the
experimental data array {χn, Tn}k; εmax is the
largest measurement error of the dependent
variable χ (see Section 2.1);
αmin is a parameter whose value is determined by
VD-method (see Section 2.3) with using model
F ∗
2 and data array {χn, Tn}k; nout is a number

of such outliers, that after their removing of the
data array {χn, Tn}k, the operational situation
“inadequacy of model F ∗

2 on the plane {χn, Tn}k”
(see condition (3) in Section 2.4) goes into the
operational situation “precision experiment on the
plane {χi, Ti}k, containing no outliers”; α∗

min is
a parameter whose value is determined by VD-
method (see Section 2.3) with using model F ∗

2 and
data array {χi, Ti}k.

Using criteria (3), one can ensure that

computational results, presented in Table 1,
demonstrate the local inadequacy of the
approximating model F ∗

2 except for systems
LaVxAl1−xO3 having k = 5 and 6. Therefore,
in the next section, the main efforts will
be focused on revealing the reasons for
inadequacy of this model and adaptation of
models F ∗

i to operational situations of some real
magnetochemical experiments.

3.2. Adaptation of modified Curie and
Curie–Weiss laws to operational situations of
some real magnetochemical experiments

i) Among all the samples listed in Table
1(A), the sample number 6 has the largest number
of readings (N = 23). For this reason, it is selected
as the best sample with experimental dependence
(see [19, 36]) {χn} = (10.97, 8.06, 6.94, 5.56, 5.11,
4.75, 4.62, 4.00, 3.79, 3.31, 3.20, 3.06, 3.00, 2.78,
2.67, 2.56, 2.48, 2.46, 2.42, 2.28, 2.12, 2.02, 1.97)
and {Tn} = (80, 121, 144, 182, 202, 214, 220, 267,
292, 351, 360, 385, 401, 438, 464, 486, 501, 512,
523, 559, 601, 651, 668).

Using the model F ∗
2 and array {χn, Tn}, let

us construct
a) a standard regression solution for

estimating the values of the parameters χ0, C, θ

χ0=0.54±0.06, C=997±29, θ=− 14.9±2.7, (6)

obtained by Marquardt’s nonlinear estimator (see
formula (15) in [1]) with max

n
|χn −χ0 −C/(Tn −

θ)| ≤ 0.18524;
b) a set of the equivalent analytical functions

F ∗
2 (A(ξ), T ) as it is mentioned in algorithm of

Section 1 and in Examples of [1, 40]

F ∗
2 (A(ξ), T ) = 0.5286 + 0.0117ξ

+(1002.75− 9.03ξ)/(T + 14.79− 1.17ξ)
(7)

where −1 ≤ ξ ≤ 1, max
n

|χn − F ∗
2 (A(ξ), Tn)| <

0.185 and consequently χ0 = 0.529± 0.012, C =
1002± 9, θ = −14.8± 1.2.

Using the same fitting model and the
truncated array {χi, Ti}, that is different from the
initial data array {χn, Tn} by the absence of the
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Table 1. The computational results on analyzing experimental data arrays {χn, Tn}k for some magnetically dilute
solid solutions.

A. Polycrystal systems VxAl1−xO1.5

k x N εmax αmin nout α∗
min

1 0.0096 11 0.01 0.017 2 0.01
2 0.019 11 0.01 0.05 2 0.01
3 0.045 10 0.01 0.03 3 0.005
4 0.059 11 0.01 0.15 3 0.01
5 0.069 12 0.01 0.15 5 0.01
6 0.078 23 0.01 0.16 5 0.03
7 0.142 21 0.01 0.23 6 0.05
8 0.195 22 0.01 0.30 5 0.05

B. Polycrystal systems LaVxAl1−xO3

k x N εmax αmin nout α∗
min

1 0.011 8 0.001 0.0054 1 0.0018
2 0.017 7 0.001 0.015 2 0.004
3 0.023 10 0.001 0.016 2 0.0024
4 0.035 11 0.001 0.07 1 0.006
5 0.041 11 0.01 0.009 0 0.009
6 0.057 10 0.01 0.01 0 0.01
7 0.080 14 0.01 0.22 5 0.03
8 0.113 11 0.01 0.12 4 0.008

C. Monocrystal systems YCaFexAl1−xO4

k x N εmax αmin nout α∗
min

1 0.0027 9 0.001 0.015 3 0.0008
2 0.0027 9 0.001 0.0054 2 0.0012
3 0.0054 12 0.001 0.034 2 0.0024
4 0.0055 12 0.001 0.027 3 0.0026
5 0.0060 12 0.001 0.020 2 0.001
6 0.060 9 0.001 0.026 3 0.002
7 0.0126 12 0.001 0.035 3 0.008
8 0.0148 12 0.001 0.02 4 0.001

D. Polycrystal systems YCaFexAl1−xO4

k x N εmax αmin nout α∗
min

1 0.0037 9 0.001 0.009 3 0.001
2 0.0039 9 0.001 0.011 2 0.002
3 0.0062 12 0.001 0.027 3 0.004
4 0.0066 11 0.001 0.095 2 0.003
5 0.0119 12 0.001 0.049 3 0.006

E. Polycrystal systems LaFexAl1−xO3

k x N εmax αmin nout α∗
min

1 0.0115 8 0.01 0.037 3 0.008
2 0.0173 10 0.01 0.12 4 0.0008
3 0.0219 11 0.01 0.34 4 0.03
4 0.0327 17 0.01 0.66 5 0.1
5 0.0439 9 0.01 0.28 3 0.02
6 0.065 17 0.01 0.56 6 0.08
7 0.088 14 0.01 0.76 6 0.04
8 0.102 13 0.01 0.79 6 0.06
9 0.122 12 0.01 0.94 4 0.12
10 0.176 8 0.01 2.1 3 0.19

F. Polycrystal systems LaSrFexAl1−xO4

k x N εmax αmin nout α∗
min

1 0.0042 18 0.001 1.3 5 0.07
2 0.0047 12 0.001 0.050 1 0.004
3 0.0058 12 0.001 0.023 2 0.008
4 0.0074 12 0.001 0.037 5 0.003
5 0.0098 9 0.01 0.040 3 0.003
6 0.0113 12 0.01 0.044 5 0.0022
7 0.0126 12 0.01 0.036 4 0.01
8 0.0131 12 0.01 0.05 3 0.0054
9 0.0169 12 0.01 0.23 4 0.05
10 0.0312 12 0.01 0.22 4 0.009
11 0.0490 12 0.01 0.55 6 0.01
12 0.0645 13 0.01 0.47 5 0.06
13 0.0902 12 0.01 0.6 5 0.01

first five (anomalous) readings and, thus, restores
the operational situation “precision experiment
on the plane {χi, Ti}k=6, containing no outliers”
(see Table 1(A) and text after the Table 1(F)),
one is able to get the undistorted values of the
parameters χ0, C, θ

c) the new Marquardt’s nonlinear estimator

solution is

χ0=0.141±0.073, C=1386±67, θ=− 88.7±10.5
(8)

with max
n

|χn − χ0 − C/(Tn − θ)| ≤ 0.03889;
d) the new operational analytical solution
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reads

F ∗
2 (A(ξ), T ) = 0.0855 + 0.0043ξ

+(1441.08− 4.58ξ)/(T + 97.49− 0.79ξ)
(9)

where −1 ≤ ξ ≤ 1, max
n

|χn − F ∗
2 (A(ξ), Tn)| <

0.040 and consequently χ0 = 0.0855 ±
0.0043, C = 1441.1± 4.6, θ = −97.5± 0.8.

ii) As it is stated in [19, 41], the polycrystal
solid solutions VxAl1−xO1.5 exist “at vanadium
concentrations 0.01 ≤ x ≤ 0.195 and 0.79 ≤
x ≤ 1.0”; metallic V203 have the magnetic
phase transition “about 160 K” and “a large
temperature-independent orbital susceptibility”.
Using these facts and the computational results
presented in Table 1(A), it is naturally to expect
that for the systems VxAl1−xO1.5

a) at high vanadium concentrations, the
dependencies χ(T ) should not differ greatly from
the dependency of vanadium oxide or, in other
words, experimental dependencies χ(T ) are to
have a sigma-shaped form and to be described
by the equation [33, 42]

χ = χ1tanh(a1(T − T1)) (10)

which is the analogue of “the activation function”,
proposed in [43] for the description of the so called
“the blurred phase transitions”.

In (10), χ is the experimental magnitude
of the specific magnetic susceptibility; T is
the absolute temperature, K; χ1, a1, T1 are
parameters of a sigma-shaped dependence;
tanh(z) is the hyperbolic tangent;

b) at low vanadium concentrations,
dependencies χ(T ) should be rather hyperbolic
type and, thus, they must be well approximated
by the modified models F ∗

2 . The implicit
confirmation of this prediction correctness is the
finding a set of kinks on the diagrams 1/χ–T
for discussed systems in [19] (see the proof of
Proposition 1 in the previous section);

c) It is easy to establish that all nout

anomalous readings of experimental arrays, listed
in Table 1(A), are in the temperature range (78÷
220) K. Thus, one can assume that all anomalous
readings can be connected with “the blurred
phase transitions”, observed in magnetically

concentrated solid solutions VxAl1−xO1.5. If so,
then the following model

χ(T ) = F ∗
2 (T ) + χ1tanh(a1(T − T1)) (11)

must have good approximating properties for
the discussed systems with both low and high
vanadium concentrations.

One can estimate the fitting quality of
the equation (11) by analysing the dependencies
δχ(T ) = χ− F ∗

2 (T ), shown in Figure 4(a,b,c) for
different vanadium concentrations of the systems
VxAl1−xO1.5.

Namely, for systems with high vanadium
concentrations, curves δχ(T ) are adduced in
Figure 4(a) for the values x = 0.788 (1), 0.848
(2), 0.908 (3), 1.0 (4); for systems with middle
vanadium concentrations — in Figure 4(b) for the
values x = 0.078 (1), 0.142 (2), 0.195 (3); for
systems with low vanadium concentrations — in
Figure 4(c) for the values x = 0.010 (1), 0.019
(2), 0.045 (3), 0.059 (4), 0.069 (5). In graphs
4(a,b,c), circles and triangles — the values of
χ2 + χn − χ0 − C/(Tn − θ), continuous curves
— dependencies χ2 + χ1tanh(a1(T − T1)) where
χ2 — some auxiliary constants by which curves
are located in the diagrams so that they do not
overlap.

iii) As it is stated in [28], for the investigated
monocrystal and polycrystal weak magnetic
systems YCaFexAl1−xO4

a) “the dependencies χ(T ) are well fitted by
Curie–Weiss law F2 = C/(T − θ) and hence they
do not have any features on diagrams χ–T or 1/χ–
T ”;

b) “if the concentrations of iron ions in weak
magnetic systems YCaFexAl1−xO4 are the same,
then it is impossible to distinguish between the
monocrystal and polycrystal samples by means
of analyzing the experimental curves χ(T ) or
1/χ(T )”.

One can make sure
a) by using criteria (3), that computational

results, presented in Tables 1(C) and 1(D),
demonstrate the local inadequacy of the
approximating model F ∗

2 (T ) for all investigated
magnetic systems YCaFexAl1−xO4;

b) by analyzing the curves δχ(T ) = χ −
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FIG. 4. Dependencies δχ(T ) for solid solutions
VxAl1−xO1.5.

F ∗
2 (T ) of systems YCaFexAl1−xO4 shown in

Figure 5(a, b), that the experimental curves
χ(T ) have the same “features on diagrams χ–
T ” as the experimental curves χ(T ) of systems
VxAl1−xO1.5, investigated in point (ii). For
monocrystal systems YCaFexAl1−xO4, curves

δχ(T ) are adduced in Figure 5(a) for the values
x = 0.0027 (1), 0.0054 (2), 0.0055 (3), 0.060 (4),
0.0060 (5), 0.0126 (6), 0.0148 (7). For polycrystal
systems — in Figure 5(b) for the values x = 0.0037
(1), 0.0039 (2), 0.0062 (3), 0.066 (4), 0.0119 (5);

c) by analyzing the curves δχ(T ) = χ −
F ∗
2 (T ) of systems YCaFexAl1−xO4 with the equal

concentration of iron ions (see Figure 5(a, b)),
that it is possible “to distinguish between the
monocrystal and polycrystal samples by means
of analyzing the experimental curves χ(T )” in
low temperature regions. This result is in a
good agreement with the conclusions of [44]: the
investigated “LiV2O4 samples, that were prepared
in slightly different ways, show the differences in
behavior dependencies χ(T ) at low T ”.

FIG. 5. Dependencies δχ(T ) for solid solutions
YCaFexAl1−xO4.
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