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Some results on cryptanalysis of Hidden Field Equations (HFE) cryptosystem over odd-
characteristic fields are presented. Using of odd-char HFE schemes reduces key generation,
encryption and decryption time. Possible attacks are analyzed. HFE parameters, for which
cryptosystem is resistant to a given set of attacks, are revealed. Recommendations for HFE
parameters choice are provided.
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1. Introduction

At present public key cryptography is
represented mainly by cryptosystems based on
factorization and discrete logarithm problems.
These problems are vulnerable to a quantum
computer: provided such a computer is developed,
the problems can be solved with polynomial
complexity.

Hash-based, code-based, lattice-based
cryptosystems, cryptosystems based on isogenous
groups of elliptic curves, as well as cryptosystems
using multivariate quadratic polynomials are
presumably resistant to a quantum computer.

The latest approach is based on the following
observation: the problem of solving multivariate
system over a finite field is NP-complete:

Proposition 1 Let f1, . . . , fm ∈ K[x1, . . . , xn]
are random quadratic polynomials with the
coefficients from a finite field K. Given
vector (y1, . . . , ym) the problem of solving
simultaneous equations f1(x1, . . . , xn) =
y1, . . . , fm(x1, . . . , xn) = ym is NP-complete
[1].

One of the earliest signature schemes based
on such multivariate simultaneous equations
is that by Schnorr and Shamir, cracked by
Pollard and Schnorr soon after it was published.
Henceforth some new schemes were published, but
they turned out to be insecure.

Some methods of hiding a secret key
structure within the public key (in a set of
polynomials) were provided by Patarin. The
simplest construction was provided in Oil and
Vinegar signature scheme (cracked by Kipnis and
Shamir). Some other encryption and signature
schemes (Dragon, Little Dragon) provided by
Patarin are less secure in comparison with HFE
cryptosystems [2].

Up to date, the main focus of researchers
was on HFE cryptosystems over the fields of
characteristic 2, since computations in these
fields are quick in both software and hardware
implementation.

In HFE cryptosystem a finite field F of q
elements is used (the recommended parameter is
q = 2) and the extension E of degree n of the field
F where n is sufficiently large (the recommended
degree is n = 128, so that the field E is of
2128 elements). The field extension is defined by
irreducible over F polynomial of degree n. The
number of elements of the fields Fn and E is the
same, so it is possible to give a bijection between
them. The map E ↔ Fn can be defined by the
basis of n elements w1, . . . , wn of the field E:∑n

i=1 tiwi ↔ (x1, . . . , xn).
HFE cryptosystem secret key is given by

affine transformations S, T : Fn → Fn and
polynomial P (x) ∈ E[x]. Formally, the secret key
is given as (S, P, T ) ∈ An(F)× E[x]× An(F).

Public key k is given by polynomials
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(p1, . . . , pn) of n variables, determined over the
field F. The public key is formed as follows:
random polynomial P (x) of one variable over the
field E is generated:

P (x) =
∑

06i<j<n,

qi+qj<d

aijx
qi+qj +

∑
06i<n,

qi<d

bix
qi + c

where d is a small constant, which restricts the
degrees of the polynomial P (x) and is usually
of the order of several hundreds. The degree of
polynomial P (x) is such that it could be efficiently
inverted (e.g. with Berlekamp algorithm).

In order to encrypt a message m, one needs
to convert it into a vector (x1, . . . , xn) over Fn.
Transformation S maps this vector into the vector
x′ ∈ Fn. The value y′ = P (x′) is the element
of the field E. Then y′ is presented as a vector
(y′1, . . . , y

′
n) and is transformed by T into a vector

(y1, . . . , yn). Ciphertext for the message m is the
value y with the redundancy value evaluated for
it.

To solve the public simultaneous equations,
the receiver applies transformation T−1 to
ciphertext, solves his secret simultaneous
equations, interpreting the transformed text
as the element of the field E. Then he applies
transformation S−1 to the components of
the solution. An intruder, not knowing secret
transformations S and T , is unable to carry out
such a procedure. The confusion transformations
can be implicitly interpreted over the field F
but not over E. Here it is a priori unknown
how n public polynomials can be described by a
single variable polynomial over E. Even if such a
polynomial exists it can be of exponential number
of coefficients and/or a larger degree that makes
the inversion problem practically unsolvable.

Nonetheless, in order cryptosystem be
sufficiently secure, the requirements to its
parameters are such that decryption algorithm
is inefficient, and it makes the practical usage of
cryptosystem difficult.

2. Analysis of algorithm
parameters

One of the main problems in applying HFE
cryptosystems is the generation of algorithm
parameters, that will provide the fastest
encryption/decryption (verification/signature),
guarantee cryptographical strength and give
optimum values to other algorithm characteristics
such as signature length, public key length, time
of the key pair generation.

In today HFE cryptosystem
implementations (Quartz, Flash, SFlash) the
field F2 is used, that considerably reduces the
space of choosing other algorithm parameters.
Thus some implementations such as Quartz-513d
are not practiced as for providing resistance to
Gröbner basis attack, the degree of the secret
polynomial must be at least 513, but with this
value the expected time of decryption is proved
to be excessively large.

The monomials in polynomial P (x) have
degrees only of the form qa+ qb where a, b ∈ N so
initially there are no other restrictions imposed
to degree d. Herewith decreasing of d increases
the secret key operations, including evaluation
the argument by the value, i.e. solution of the
equation P (x) = y towards x, which is the hardest
decryption operation.

Currently, to provide cryptographic security,
parameter d varies from 129 to 513 for different
cryptosystem modifications. These values
significantly increase the time of message
encryption, so using HFE cryptosystem in
practice with d>256 is hindered, whatever how q
and n are chosen (with regard to the restrictions
of safety requirements).

Odd-characteristic fields allow using less-
degree polynomials for providing the same
cryptographic security level. For deg(P ) = 2
one can use standard formula of getting roots
for second-degree equation for solving P (x) = y
equation. Herewith, if qn ≡ 3 (mod 4) then to
find the quadratic root from the field element,
one is to raise this element to (qn + 1)/4 power,
which is rapidly carried out by successive squaring
and multiplying. As q is prime, q 6= 2 (q and
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d can not be simultaneously equal to 2), the
congruence qn ≡ 3 (mod 4) holds if and only if
q ≡ 3 (mod 4).

Increasing the degree n of extension results
in increasing the number of elements number of
the field E, that, in turn, is followed by the
rising field operations time, growing the public
key size, and rising key pair generation time.
Among other things (in spite of the fact that
attacks to HFE algorithm using the subfields of
the field E are unknown yet), it is recommended
to choose n being prime, as, on the one hand,
it does not impose essential restrictions to the
implementation, and, on the other, makes possible
to hold the system security, provided such attacks
be implemented. Furthermore, in consequence of
n rising, the length of the plaintext block being
encrypted grows: given q and n it is equal to qn.
For today, parameter n is varied from 80 to 256
for different cryptosystem modifications.

From the theoretical point of view, it is
possible to implement HFE cryptosystem for any
given finite field F. Nonetheless, the characteristic
q of the field F should not be large for two
reasons. Firstly, operations in the finite non-large
characteristic field are accomplished easier than
in the large ones. The second reason is contained
in the way of secret key P is formed: parameter d
depends exponentially on the characteristic of the
field F, since d depends on qa+ qb where a, b ∈ N.

When the value d is fixed (d = 2), the
field characteristic does not affect the polynomial
degree, so this restriction is not considered
further.

At the same time, when q decreases, the
number of coefficients of public polynomials
increases, hence, the size of public key grows as
well.

With the restrictions indicated, it may be
summed up that while choosing characteristic of
the finite field F, the balance should be found
between the rate of encryption, on the one hand,
and the permissible maximum length of the public
key, on the another. A particular task can be of
higher priority for different applications. In this
case the increase in the encryption rate may be
reached at the cost of that in the public key

length, and vice versa.

3. Security analysis

Let (x, y) be a pair plaintext/ciphertext, k
be the public key of HFE cryptosystem. Possible
attacks on a cryptosystem are:

1. Inversion: given y and k find x.

2. Reveal of the inner structure: given public
key k compute the secret key (S, P, T ).

We will call such attacks inversion attack and
structural attack respectively.

3.1. Inversion attacks

HFE cryptosystem public key k is an
algebraic simultaneous equations of not above
the second degree. Given ciphertext y and public
key k = (p1, . . . , pn), it is possible to form
simultaneous equations

p1(x1, . . . , xn)− y1 = 0,
. . .
pn(x1, . . . , xn)− yn = 0,

the solutions of which in the field Fq represent
the plaintext. Attacks based on solving of such
a system, without knowing the inner cipher
structure, are called algebraic attacks. They can
be classified as follows:

• attacks based on the algorithms of Gröbner
basis computation (Buchberger algorithm,
F4 and F5 algorithms);

• attacks based on linearization
(relinearization) technique;

• attacks specified for the secret key of a
special form.

The best published implementation of Buchberger
algorithm allows solving efficiently only not large
systems of equations, the solutions of which are
of the size of approximately 20 bits.
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The most efficient inversion attacks are those
based on F4 and F5 algorithms. It is shown in
[3] that when solving simultaneous equations over
the field F2 with F4 and F5 algorithms, to provide
security of at least 2128 operations, it is necessary
for extension degree to be of at least 134. For
such the parameters encryption, decryption and
key generation in HFE algorithm will be carried
out excessively slow in practice.

Let consider secure parameters for HFE
cryptosystem over odd-characteristic fields.

Proposition 2 For a semiregular system the
number of arithmetic operations implemented by
F5 algorithm in the field Fq is at most

O

((
n+ dreg

n

)ω)
where ω < 2.39 shows the complexity of matrix
multiplication; the regularity degree dreg is the
number of the smallest nonpositive member of the
Gilbert series Sm,n =

∏m
i=1(1−zdi )
(1−z)n . Here m = 2

is the number of equations, n is the number of
variables (coincides with the degree of the field
extension), di is the degree of i-th equation, which
for 16i6n is equal to 2, for n+16i62n is equal to
q [4]. For semiregular systems F5 algorithm does
not carry out the reduction of monomials, whose
degree is less than dreg.

Thus, the complexity of the attack depends
on the number of variables and the degree of the
system regularity. The proposition above allows
generating a large set of parameter pairs n and q
for which the complexity of the attack based on
F4 and F5 algorithm exceeds 280 (e.g. see Table 1).

Table 1. How the degree of regularity of simultaneous
equations over the field Fq depends on the number of
variables for F4 and F5 algorithms.

n q dreg Attack complexity
11 37 38 280

13 41 42 293

23 17 21 295

11 47 48 288

Other kinds of inversion attacks are
those based on relinearization. Relinearization
technique uses equations of the form
(xaxb)(xcxd) = (xaxc)(xbxd) = (xaxd)(xbxc),
the so-called fourth-degree relinearization, and
solves m quadratic equations of n variables
for m>0.1n2. Examples of the most efficient
algorithms of such a kind are those of XL and
FXL.

The time of algorithm implementation is
approximated by O

((
nD/D!

)ω), as its most
cumbersome step is the Gaussian elimination of
about nD/D! variables where D is a selectable
algorithm parameter. For the base variant of the
Gaussian elimination it is ω = 3, for optimized
variant it is ω = 2.3766.

Proposition 3 For overdetermined
simultaneous equations, congruence dreg =
4
√
q+ m

2 −hf−1, 1
√

m
4 +O(1) is true where hf,1 is

the supreme null of kth Hermite polynomial and
f = m− n [5].

As in the case of the Gröbner basis, the degree
of regularity corresponds to the largest degree
of a monomial from those computed during
relinearization algorithm. In accordance with this
proposition, let us build up the table with the
degrees of regularity, as well as complexity of XL
algorithm for the different values of n and q (Table
2).

Table 2. How the degree of regularity of simultaneous
equations over the field Fq depends on the number of
variables for XL algorithm.

n q dreg Attack complexity
37 53 22 298

41 53 22 298

43 53 22 298

47 53 22 298

53 53 22 298

59 53 22 2115

61 53 22 2120

67 53 22 2120

71 53 22 2120
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Table 3. How the attack complexity depends on q and
n, the complexity is at least 280 operations.

q n Attack q n Attack
complexity complexity

37 11 80 17 19 81
41 11 84 19 19 83
43 11 85 23 19 91
47 11 88 11 23 84
53 11 92 13 23 87
59 11 95 17 23 95
29 13 81 5 29 84
31 13 84 7 29 981
37 13 90 5 31 86
41 13 93 3 37 84
43 13 95 3 41 88
23 17 86 3 43 94

Table 4. How the attack complexity depends on q and
n, the complexity is at least 2128 operations.

q n Attack q n Attack
complexity complexity

59 17 128 23 31 128
61 17 130 29 31 135
67 17 134 31 31 138
71 17 137 37 31 150
73 17 138 13 37 129
79 17 142 17 37 137
83 17 145 19 37 140
89 17 148 23 37 146
53 19 132 11 41 135
59 19 138 13 41 141
61 19 139 17 41 147
67 19 144 11 43 141
71 19 148 13 43 144
73 19 149 7 47 136
41 23 133 11 47 150
43 23 136 5 53 135
47 23 141 5 59 150

3.2. Structural attacks

Given public key, structural attacks find the
secret key. In fact, these attacks use peculiarities
of a cryptosystem, in contrast to inversion attacks
aimed at solving complex mathematical problem
(that of solving simultaneous quadratic equations
over the finite field). Nowadays the only known
attack on HFE cryptosystem is Kipnis and

Shamir’s one [6]. The attack of Kipnis and Shamir
is based on sequential computing secret key parts,
namely S and T transformations and polynomial
P . Cryptanalysis gives either the real secret key or

Table 5. How the attack complexity depends on q and
n, the complexity is at least 2256 operations.

q n Attack q n Attack
complexity complexity

151 29 256 101 43 284
157 29 260 71 47 257
163 29 263 73 47 260
167 29 265 79 47 270
173 29 268 83 47 276
179 29 271 89 47 284
181 29 272 67 53 267
191 29 277 71 53 274
193 29 278 73 53 278
197 29 280 43 67 270
199 29 281 47 67 276
137 31 259 53 67 283
139 31 261 29 71 261
149 31 267 31 71 264
151 31 268 37 71 275
157 31 272 41 71 281
163 31 275 43 71 284
167 31 278 29 73 268
97 41 272 31 73 270
101 41 276 37 73 282
103 41 278 17 79 258
107 41 283 19 79 265
109 41 285 23 79 274
79 43 256 13 83 257
83 43 262 17 83 271
89 43 270 19 83 277
97 43 280 11 89 265

an equivalent key (i.e. secret key corresponding to
the same public key). This attack usually appears
to be exponential and inefficient even for the
fields of characteristic 2. For odd-characteristic
fields the complexity of this attack grows. In
comparison with inversion attacks, structural
attacks are less efficient for cryptosystems over
odd-characteristic fields.
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4. Choosing HFE cryptosystem
parameters

Thus in order HFE cryptosystem over odd-
characteristic fields be secure over inversion
attacks (F4, F5, XL, FXL), its parameters should
meet the following conditions:

• the field characteristic should be 3 modulo
4: q ≡ 3 (mod 4);

• secret polynomial P (x) should be of the

form ax2 + bx+ c where a, b, c are random
elements of the field Fqn ;

• the extension degree n should be prime.

Amongst others, to provide resistance to F4, F5,
XL, FXL attacks, as well as to Kipnis and
Shamir’s one, it is recommended to choose the set
of parameters in correspondence with tables 3–5
(we consider the complexity of the most effective
attack).
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