
Nonlinear Phenomena in Complex Systems, vol. 17, no. 3 (2014), pp. 242 - 252

On Boolean Ideals and Varieties with Application to
Algebraic Attacks

A. G. Rostovtsev and A. A. Mizyukin
Saint-Petersburg State Polytechnic University,

29 Politechnicheskaya Str, 195251 Saint-Petersburg, RUSSIA
(Received 21 March, 2014)

To find a symmetric cipher key is to solve the zero ideal of a specified set of polynomials.
It is shown that the complexity of solutions can be reduced if the exact or approximate
basis of the ideal substitution is defined by short polynomials. The accuracy of short basis
polynomials can be improved by an affine change of variables. Two methods are proposed
for solving systems of Boolean equations with the use of auxiliary short polynomials.
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1. Introduction

Symmetric cipher, hash function, as well as
any computable function, is described by a set
of polynomials in the Zhegalkin polynomial ring.
Any finite set of polynomials forms an ideal.
Zeroes of an ideal form a variety.

The problem of key breaking or hash
function inversion is reduced to solving a system
of polynomial equations. If the cipher has several
cycles of encryption, the unknowns are the
number of bits of key and intermediate texts.
For example, if AES cipher has 10 cycles, an
encryption key length and block length of 128
bits, and if the plaintext and ciphertext are
known, then the number of unknowns is 1280.
If the solution is unique, then the corresponding
variety contains a unique point in the affine space
over the original field.

To find the common zero of Zhegalkin
polynomials, Faugere method is used to calculate
Groebner basis [1], equivalent XL / XSL Courtois
method [2], the method of resultants [3], the
method of characteristic sets of Wu and Ritts
[4], the Semaev method of gluing and agreeing
[5], which does not operate with polynomials, but
with tables of their values.

These methods are called algebraic attacks
and they have a lot in common. In particular, a
common feature of them is that the initial and
final description of equations has a simple form,

that is, polynomials are sparse. However, when
making a solution, the intermediate polynomials
are no longer sparse, which is time consuming and
requires exponentially bigger memory size.

Since the Zhegalkin polynomial is linear
in each variable, it can be represented as f =
f 0 + f 1x, where f 0, f 1 do not depend on the
chosen variable x. If g = g0 + g1x, then to
eliminate variable x we will find fg1 + gf 1 =
f 0g1 + f 1g0. Therefore, equations f = 0, g = 0

imply an equation for the determinant
∣∣∣∣ f0 f1
g0 g1

∣∣∣∣ =
0. It allows replacing two equations with one,
and in case of k equations replace them with
k − 1 equations. In the Zhegalkin polynomial
ring every polynomial is a zero divider, and
multiplication by zero divisor can lead to an
increase in the number of solutions, but given
replacement of two equations with one preserves
uniqueness of the solution. Such method of
variable elimination is reduced to an Faugere
algorithm, since multiplication of polynomials
reduces to multiplication of the polynomial by a
monomial.

Modern ciphers use mixing transformations,
described by nonlinear equations, and diffusion
transformations, described by linear equations.
Substitutions on short length words are generally
used as a mixing transformation. The complexity
of the solving system of polynomial equations
is determined by properties of substitution.
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Ciphers are designed so that it is difficult to
specify a metric indicating how close the test
key is to the searched key. Sometimes it is
suitable to define this metric averaged for a large
number of open texts and relevant ciphertexts,
which is used, in particular, in differential and
linear methods [6–8]. To disable these methods,
substitutions with special properties are selected.
According to papers [9, 10], special substitutions
apparently have no advantages compared to
random substitutions.

This paper shows that the complexity of
solving systems of polynomial equations can be
reduced by defining or supplementing an ideal
with short polynomials that have a small number
of terms. Algorithms of such ideal definition
and improved algorithms for solving systems of
polynomial equations are proposed.

2. Ideals and varieties of the
polynomial ring

In this paper symbol + denotes the sum of
elements of the ring, ⊕ − sum of ideals, ideals
are designated with uppercase letters, vectors are
denoted in bold, ⊕2 − field of two elements.

Let R be a commutative associative ring
with identity. Ideal A ⊆ R is a set (subring) of
such elements of the ring, that if f, g ∈ A, then
f ± g ∈ A and fr ∈ A for any r ∈ R. The set
of ring ideals is partially ordered by inclusion.
If A ⊇ B, then we say, that B is divisible by
A. If A = (f1, . . . , fk), then f1, . . . , fk are
the basis of the ideal , every element of A is
a linear combination of the basis elements with
coefficients in R. The main ideal is defined by a
single polynomial A = (f).

Commutative and associative addition A ⊕
B = (A,B) and multiplication operations are
defined for ideals. If the product of ideals AB
is generated by products of elements of A, B.
If f ∈ A, then we say that f is divisible by A.
The intersection of ideals A ∩ B ⊇ AB is the
largest ideal containing A and B. Every ideal is
contained in some maximal ideal M , differing of
R. The prime ideal is defined as an ideal for which

the residue class ring is complete. Every prime
ideal is maximal, in an Artinian ring the contrary
is true as well [11].

If R is Noetherian (strictly ascending chain
of ideals is limited), any of its ideal has a finite
basis. A ring in which any strictly ascending chain
of ideals is limited called an Artinian one. The
maximum chain length of ascending prime ideals
of R ring is called the dimension of the ring. An
Artinian ring is a Noetherian ring of dimension 0
[11].

Every ideal is characterized by a set of zeros.
Ideals A and A2 have the same set of zeros, but
A ⊇ A2. The highest ideal, which has the same
set of zeros as A, is called radical A. The radical
ideal coincides with its own radical.

Let K be a field, K [x 1, . . . , xn] be a
polynomial ring, Nn(K ) be an affine space. Any
ideal A ⊆ K[x1, . . . , xn] defines variety V (A)
– set of points P ∈ Nn(K ), in which A = 0
(radical ideals bijectively correspond to varieties).
A maximal ideal defines variety consisting of one
point. Intersection (product) of ideals corresponds
to varieties union, the sum of ideals corresponds
to intersection of varieties. According to the
Hilbert theorem on basis, each ideal of the ring
K[x1, . . . , xn] is finitely generated [12] and is
uniquely defined by the intersection of the powers
of maximal ideals.

For an ideal A ⊆ K[x1, . . . , xn] with variety
V (A) coordinate ring K[x1, . . . , xn]/A is defined,
whose elements are called functions on V (A).

In the ring of polynomials of several variables
the division of a polynomial on the ideal is
actually ambiguous and depends on the order of
division into elements of a basis. Groebner bases
are used to resolve ambiguity.

Uniqueness of the division is obvious for
monomials and is defined by the partial ordering
of monomials by multidegree: xc11 xc22 . . . xcnn is
devisable by xd11 xd22 . . . xdnn , if c1 > d1, c2 >
d2, . . . , cn > dn. Polynomial f is devisable by
monomial h, if every monomial of polynomial f is
devisable by h.

To calculate the Groebner basis, ordering of
monomials is introduced. Let LT(f ), LT(g) be the
leading terms of polynomials f, g, and LCMf ,g be
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the least common multiple of relevant monomials.
Buchberger algorithm for computing Groebner
basis for all pairs of polynomials (f, g) of the ideal
basis computes syzygies

S(f, g) =
LCM(f, g)

LT(f)
f − LCM(f, g)

LT(g)
g

(thus leading monomials are reduced) and adds
them to the basis. As the number of monomials
is finite, then at some step the process stops.
Basis (g1, . . . , gm) is a Groebner basis if
for any gi, gj their syzygy will be devisable
by some polynomial of the basis. To remove
excess polynomials from the Groebner basis the
algorithm of ideal reduction is used [13]. In
the case of linear polynomials an algorithm for
computing the Groebner basis is analogical to the
Gaussian elimination algorithm.

Groebner bases can be used for solving
systems of polynomial equations in the ring K [x 1,
. . . , xn], since any set of polynomials defines an
ideal and the corresponding variety , and solving
the system of equations means finding this variety.
If the system has a unique solution (e1, . . . , en),
ei ∈ K, then the Groebner basis has the form (x 1

− e1, . . . , xn − en).

3. Boolean rings, their ideals and
varieties

In Boolean ring R we have the relation
a2 = a for all a ∈ R. The Boolean ring has
characteristic 2 by equations a + a = (a + a)2

= a2 + 2a2 + a2 = a + a + 2a, where 2a =
0. Moreover, the Boolean ring is commutative by
equations a + b = (a + b)2 = a2 + ab + ba +
b2 = a + b + ab + ba, from which ab = ba.

Elements of finite Boolean rings are Boolean
functions. Every Boolean function f of n variables
x = (x1, . . . , xn) can be uniquely defined
by 2n-dimensional vector f of values for sets of
arguments ((0, . . . , 0), (0, . . . , 0,1), (0, . . . , 0,1,1),
. . . , (1, . . . , 1)). Furthermore, function f can be
defined by the Zhegalkin polynomial
f = a0 + anxn + an−1xn−1 + an,n−1xnxn−1 +
an−1xn−1 + . . . + an,n−1,...1xnxn−1. . . x 1,

i.e. vector of coefficients a = (a0, an, an−1, an,n−1,
an−2, . . . , an,n−1,...1) length 2n.

The Zhegalkin polynomial ring Gn[x], x =
(x 1, . . . , xn), is defined as the residue class ring
Gn[x] = ⊕2[x 1, . . . , xn]/(x 1

2 + x 1, . . . , xn2 + xn),
where ⊕2 = {0, 1}. By equation f 2 + f = f (f +
1) = 0 every element is a zero divisor , so the zero
ideal is not simple.

Since the ring Gn[x] is finite, it is Artinian,
so the product of their ideals coincides with
their intersection, ring dimension is 0, sets of
prime and maximal ideals coincide, every ideal
is radical. The prime ideal corresponds to a
variety, consisting of a single point. The product
of all prime ideals is 0. Every ideal is uniquely
represented as a product of prime ideals.

The prime ideal corresponding to the point
(e1, . . . , en), can be defined by one polynomial
1 +

∏n
i=1 (xi + ei + 1). Therefore, every ideal of

the ring Gn[x] can be defined by a single
polynomial, and every polynomial defines some
ideal.

Unique decomposition into prime factors
allows determining division of ideals. Ideal A is
devisable by ideal B, if a set of zeros of ideal B
is a subset of the set of zeros of A. Consequently,
there is no need to use Groebner bases for division
in Gn[x].

If A =
∏

i∈I Pi, B =
∏

i∈J Pi

is a decomposition on prime ideals,
then the greatest common divisor
of ideals GCD(A, B) =

∏
i∈I∩J Pi,

LCM(A, B) =
∏

i∈I∪J Pi. Here, instead of the
product of ideals we can use their intersection.

The sum of ideals (A,B) = (A ⊕ B) is an
ideal which algebraic set consists of intersection
of zero sets of ideal A and B: V (A ⊕ B) =
V (A) ∩ V (B). In this case we obtain for the
principal ideals (f ) ⊕ (g) = (f + g + fg).

By analogy with decomposition of the ideal
into product, we can consider the decomposition
of the ideal into the sum of ideals. Analogues
of prime ideals are additively irreducible ideals.
Additively, an indecomposable ideal has a single
identity value, so if P is a prime ideal, then
1 + P (complement to ideal P ) is an additively
indecomposable ideal.
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Theorem 1. Ring Gn[x] is isomorphic to
ring G(2n) 2n- dimensional binary vectors with
operations of coordinate-wise multiplication and
addition.

Proof . Zero and identity element of the ring
Gn[x] are constants 0 and 1. Zero of the ring
G(2n) is a null vector, the identity element is
a vector with all unit coordinates. There is a
bijection between elements of the rings Gn[x] and
G (2n), defined as a transition from the vector
of values of the Boolean function to the vector
of coefficients. In this case the vector sum of
the values of Boolean function will correspond
to the sum of polynomials (vector sum of their
coefficients), and the product of the vectors
of values will correspond to the product of
polynomials (convolution of coefficient vectors).
Hence, these rings are isomorphic ones. �

Lagrange’s interpolation formula implies
that if f ∈ G(2n) is a vector of values of the
Boolean function of n variables at points ((0,
. . . , 0), (0, . . . , 0,1), (0, . . . , 0,1,1), . . . , (1, . . . ,
1)), a is a coefficient vector of relevant Zhegalkin
polynomial of Gn[x], then a = Lnf, where L1 =(

1 0
1 1

)
, Li+1 =

(
Li 0
Li Li

)
. Since Ln = Ln

−1,

then f = Lna. Matrix Ln of size 2n contains in
each row and each column the number of nonzero
elements raised to the power of 2. The complexity
of calculation of the given isomorphism is O(2n).
Therefore, if the number n is not large, it is not
possible to differentiate between rings Gn[x] and
G(2n).

In the ring Gn[x] two types of division
are defined: an ordinary polynomial division
(P-division) f = gh, deg(f ) = deg(g) +
deg(h), uniquely defined, and algebraic- geometric
division (AG - division): f = gh, if V (f ) = V (g)
∪ V (h), not uniquely defined. Two types of ideal
division are defined respectively. In this case ideal
A is devisable by B (AG-division), if V (A) ⊇
V (B). Then there is ideal C, so that A = BC and
V (A) = V (B)∪V (C). P-division is a special case
of AG-division. P-division is used in calculation
of Groebner bases.

Two types of division are based on two types

of analysis of ideal F = (x21 + x1, . . . , xn
2 + xn),

defining the field ⊕2. In the case of P-dividing
this ideal is considered as external with respect to
the original infinite integral ring of polynomials,
and it can be added to the basic ideal, defining
the desired variety (describing the set of keys
to the given plaintexts and ciphertexts). In the
case of AG- dividing this ideal is considered an
integral part of the polynomial ring, which leads
to presence of zero divisors.

Let the cipher be described by a set of
polynomials in the ring Gn[x]. This set of
polynomials defines ideal A of variety V (A),
which in algebraic geometry is considered over
an algebraically closed field. Even if the key is
uniquely determined, the variety contains a large
number of zeros (finite or infinite), whose power
exceeds the power of the set of keys. To obtain
the solution in a simple field we add to ideal A
an ideal that defines field ⊕2, i.e. we carry out
calculations in the ideal A⊕ F .

To simplify the computational process
Courtois and Faugere [1, 2] proposed to isolate
F from common ideal A ⊕ F , computing the
Groebner basis for the ideal A and the resulting
syzygy of modulo ideal F . Generalizing this
approach, one can assume ideal A as sum A =
B⊕I, isolate from the ideal A⊕F = B⊕I⊕F ideal
I ⊕ F for some opportune ideal I and compute
the Groebner basis for ideal B, resulting syzygy
of modulo ideal I ⊕ F . Therefore, instead of the
original polynomial ring ⊕2[x 1, . . . , xn] (or ring
Gn[x]) it is considered the coordinate ring of
variety V (I ⊕ F ), and syzygies are considered
functions on the variety.

4. Ideal substitution and short
additive decomposition

Basically, a cipher is built using
substitutions on 3–8 bit words and diffusion
mapping. Substitutions are described by
nonlinear polynomials, diffusion mappings
are usually defined by linear mappings of
the form y = Lx, where L is an invertible
matrix. The complexity of solving the
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system of equations describing the cipher is
mainly determined by non-linear substitution
polynomials. Any mapping is defined by a set of
Zhegalkin polynomials, that is the ideal and the
corresponding variety, which can be interpreted
as a vector of values of ideal for all possible sets
of variables.

If the substitution y = S (x) forces on n –
bit words, then the polynomials from (x 1, . . . ,
xn, y1, . . . , yn), reverted to 0 at points, where
equation y = S (x) is true, become elements of
ideal substitution AS ⊂ G2n[x, y]. Principal ideal
is defined by polynomial, reverting to 0 exactly
at points satisfying the equation y = S (x). The
substitution variety consists of 2n points.

To withstand cryptanalysis methods
substitutions y = S (x) are selected in a special
way. Let x, x′ be the pair of inputs, y, y′
be corresponding outputs. The differential
substitution is the pair (∆x, ∆y), where ∆x =
x + x′, ∆y = y + y′, is characterized by its
probability, if x runs through all set of inputs
[14]. The most probable differential must have
a minimum probability. Also, probabilities of
equations ax + by for all possible vectors a, b
must have a minimum deviation from 0.5.

Solution of the system of Boolean equations
describing the cipher is difficult for the following
reason (it is sufficient to show this for the
Groebner bases). The original basis of the ideal is
defined by a small number of short polynomials.
The final basis for an ideal is also defined by
a small number of short polynomials. However,
when computing syzygies the power and length
of polynomials increase. Even if the original
polynomials have power 2 and lengths m1, m2,
their syzygy already has power 3 and length
m1 + m2 − 2. Thus, all syzygies of binomial
ideal are binomials. Moreover, the length of the
syzygy of polynomial and binomial equals to
the length of the polynomial. This demonstrates
the necessity of defining the ideal basis not
by polynomials describing the separate bits
substitution, but using as short polynomials
(monomials, binomials, trinomials) as possible,
even if their number is large.

We call an ideal monomial (binomial,

trinomial, quadrinomial), if it is defined by
monomials (binomials, trinomials, quadrinomials,
respectively). If the ideal of the Boolean
polynomials has a unique zero (e1, . . . , en), then
it is a binominal and has a form (x 1 + e1, . . . , xn
+ en).

Let A = (f) = (f1, . . . , fk) = (f1) ⊕ . . . ⊕
(fk) be additive decomposition of the ideal. Then
for the corresponding vector values we have: f =
f1 ∨ . . .∨ fk. The following assertion is true.

Theorem 2. Every ideal is uniquely represented
by the sum of additively indecomposable ideals.

Proof If the ideal (g) is prime, then ideal (1 + g)
is additively indecomposable. Taking into account
the equation g1 ∨ . . .∨ gk = 1 + (1 + g1). . . (1 +
gk) and unique decomposition of ideal on product
of prime ideals we obtain the required assertion.
�

Hence, ideals under addition form a
commutative monoid isomorphic to the monoid
of binary vectors with the operation OR.

We are interested in additive decomposition
not into irreducible polynomials, but into as
short polynomials as possible. Obviously, the
ideal substitution cannot be defined only by
monomials. Let us consider the relationship
of binomial ideals and Boolean functions in
disjunctive normal form (DNF). DNF without
inversions forms a commutative semi-ring.

Theorem 3. An ideal is binomial if and only
if, when it is defined by DNF in which each
conjunction has no more than one inversion.

Proof Let us prove that if DNF consists of
conjunctions in which each variable has no more
than one inversion, it defines a binomial ideal.
Let m be a monomial. Since mx = m +mx is a
binomial, then such DNF defines binomial ideal.
Conversely, let (f ) = (f 1, . . . , fk) and all fi be
binomial. We will show that every binomial can be
represented with DNF, in which only one variable
has an inversion. It is sufficient to consider one
binomial m1 + m2 = m1m2 ∨ m1m2, where m1,
m2 are monomials. Due to the equation x1 . . . xl =
x1 ∨ . . . ∨ xl we obtain the required assertion. �
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Note, that DNF in theorem 3 must be
minimized.

The Boolean function is symmetric if
its values do not change after an arbitrary
permutation of variables. Denote Si(x 1, . . . , xn) ∈
Gn[x] as i -th elementary symmetric polynomial.
We define the elementary symmetric DNFs:
Ti(x 1, . . . , xn), 0 6 i 6 n, − disjunction of all
conjunctions containing exactly i variables with
inversion 0 6 i 6 n. For example, T1(x1, x2, x3) =
x1x2x3 ∨ x1x2x3 ∨ x1x2x3. Here TiTj = 0 for i
̸= j. It is true for the semi-ring DNF analogue
of the theorem on symmetric polynomials in the
polynomial ring.

Theorem 4. Any symmetric DNF can be
represented as a disjunction in the elementary
symmetric functions.

Proof It is sufficient to consider non-constant
functions. We lexically order identity values of
a Boolean function f : bigger sets of variables
contain many inversions. Any symmetric function
has an identity value for the higher set of variables
containing m inversions. It has an identity value
for all sets with m inversions, i.e. f = Tm ∨
. . . Then we proceed to the succeeding sets of
variables containing m1 inversions and so on. We
obtain f = Tm ∨ Tm1 ∨ . . . ∨ Tmk

. �
Let us consider trinomial ideals.

Theorem 5. DNF is a trinomial in ring Gn[x],
if and only if DNF can be represented in the form
f = T0(C1, C2, C3) ∨ T2(C1, C2, C3), where
C1, C2, C3 are conjunctions without variables
inversions.

Proof It is directly verified, that f takes on the
value 1 if and only if C 1 + C 2 + C 3 = 1. Any
trinomial can be defined in this way. �

Corollary 6. Ideal is trinomial if and only
if its defining polynomial f can be represented in
DNF in following form

f = ∨i(T0(C1i, C2i, C3i) ∨ T2(C1i, C2i, C3i)),

where Cji are conjunctions without inversions.
The proof follows directly from Theorem 5.

Similarly, DNF is the sum of the four
monomials in the Zhegalkin polynomial ring if
DNF is equal to 1 if and only if one or three terms
of polynomial are equal to 1. Therefore, C 1 + C 2

+ C 3 + C 4 = T 1(C 1, C 2, C 3, C 4) + T 3(C 1,
C 2, C 3, C 4).

Let us consider some of the algebraic
properties of the Boolean functions defined in
such basis.

Theorem 6. Following equalities are true.

1. a ∨ (a+ b) = a ∨ b.

2. a1 ∨ . . . ∨ an = S1(a1, . . . , an) + . . .+
Sn(a1, . . . , an).

3. (a1 + b) ∨ . . . ∨ (an + b) = S1(a1, . . . , an)
+ . . .+Sn(a1, . . . , an)+b(1+S1(a1, . . . , an)
+ . . .+ Sn−1(a1, . . . , an)).

Proof First equation and all other equalities for
n = 2 can be verified directly. Then we use an
induction method. �

Hence follows an algorithm for the
approximate calculation of the ideal basis of
the shortest polynomials. The algorithm of direct
verification of short polynomials of the ring
G2n[x, y], lying in ideal, is complex even for
4-bit substitution. For example, for n = 4 the
number of trinomials is 2.7·106, the number of
quadrinomials −1.75 · 108, for n = 8 the number
of binomials, trinomials, quadrinomials is 2.1·109,
4.7 · 1013, 7.7 · 1017 respectively. It is necessary
to limit the number of analyzed monomials to
accelerate the algorithm. The proposed algorithm
works as follows.

Algorithm 1. Computation of short
polynomials, defining ideal substitution.

1. We compute a set of zero substitutions
V (S ) and its complement , compute
polynomial f (S ), defining the principal
ideal substitution.

2. We compute the list of monomials that
are 0 at points from V (S ), and delete
monomials that are devisable by any
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monomial in the list (delete excess
monomials). We obtain original basis of
ideal A1. We compile set V1 = V (S) ∩
V (A1).

3. We find f 2 = f (S ) (mod A1), compile the
list T 2 of monomials of f 2 and divisors of
this monomials.

4. We compile binomials from the list T 2

that are 0 in every point of V (S ), and are
equal to 1 in some points of V 1. We add
binomials to ideal basis and assume A2 =
A1 ⊕ {found binomials}. We delete excess
binomials that do not change V (A2). We
compile a set V2 = V (S) ∩ V (A2).

5. We find f 3 = f 2 (mod A2), compile the list
T 3 of the monomials of f 3 and divisors of
this monomials.

6. We compile trinomials from the list T 3,
that are 0 in every point of V (S ), and are
equal to1 in some points of V 2. We join
binomials to ideal basis and assume A3 =
A2 ∪ {found trinomials}. We delete excess
trinomials, that do not change V (A3). We
compile a set V3 = V (S) ∩ V (A3).

7. We repeat the procedure of two last steps
to find polynomials of length 4 and etc.
The algorithm stops, when Vk is null, or its
power is low enough (in the second case an
approximate basis of the ideal substitution
will be found).

5. Affine equivalence of ideals

The set of substitutions can be divided into
affine equivalence classes S 1 ∼ S 2, if S 1 = AS 2B,
where A, B are affine substitutions of the form
A(x) = Lx + c, L − invertible matrix. Affine
equivalence of substitutions is a cryptanalysis
tool [15]. Affine equivalence does not change the
probability of the most probable differentials and
linear sums.

During the computation of the Groebner
bases of a system of polynomial equations it

does not matter which variables describe the
inputs and which ones describe the outputs of
the substitution. Thus, we can permute input and
output bits arbitrarily. Hence, the substitution
ideal may correspond to two substitutions
(original and reverse) or even greater number of
substitutions. Ideal of the ring AS ⊂ G2n[x,y],
having 2n zeroes, is the ideal of the mapping with
input u if we can choose n variables {u1, . . . , un}
⊂ {x 1, . . . , xn, y1, . . . , yn} so, that all ideal zeroes
correspond to a non-repeating sets {ui}.

Thus, an ideal substitution corresponds to
at least two substitutions: original and reverse.
However, this does not exclude the existence of
other maps having the same ideal. For example,
ideal substitution S 0[0] of the DES standard
(e, 4, d, 1, 2, f, b, 8, 3, a, 6, c, 5, 9, 0, 7)
corresponds to 6 maps (including original and
reverse substitutions).

Let us define affine equivalence of ideals of
the ring G2n[x, y] : A ∼ B, if A(x, y) =
B(L(x, y) + c), where L is invertible over ⊕2

square matrix of size 2n, multiplied by the column
vector (x, y) of length 2n. Affine equivalence of
ideals is a generalization of affine equivalence of
substitutions, where matrix L is block-diagonal.
Affine equivalence separates the set of ideals into
classes. In this case, an ideal which is affinely
equivalent to substitution ideal may not be an
ideal mapping, but the power of its variety is
preserved.

Affine equivalence of ideals allows us
to generalize the notion of differential and
substitution nonlinearity. It is known that the
affine substitution equivalence preserves the
probability of the most probable differentials and
substitution nonlinearity. A differential ideal is
defined in the same way as that for substitution,
the differential probability is averaged over the
variety ideal. We define the non-linearity of the
ideal as the minimum nonlinearity of the Boolean
function, lying in this ideal. Affine equivalence of
ideals preserves their nonlinearity and maximums
of differential probabilities.

Affine equivalence of ideals is a convenient
tool for solving systems of polynomial equations.
For example, we can obtain a more convenient
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system of polynomials by selecting a suitable
affine transformation.

The group of invertible matrices is generated
by transvections − matrices with identity
elements on the main diagonal and only one
identity element outside the main diagonal
[16]. The required affine transformation can be
found by the steepest descent method with
minimization of the relevant objective function
using transvections and shift vectors c.

Replacing the ideal substitution with an
affine equivalent ideal may shorten the length of
polynomials that define the ideal and improve
the accuracy of the approximation of the ideal
by short polynomials (monomials, binomials,
trinomials). To calculate the affine reversible
change of variables that optimizes the ideal
substitution, you can use the method of the
steepest descent. For example, at first we choose
shift vector c, then we choose vectors of matrix L.
During experimental studies of affine equivalent
ideals for different substitutions it was noticed
that a convenient affine equivalent ideal is
obtained when the length of the polynomial
defining the principal ideal is minimal.

Algorithm 2. Calculation of affine change
of variables that optimizes the substitution ideal.

1. We calculate the polynomial f (S ) that
defines the principal ideal substitution.

2. We calculate vector c that minimizes length
f (S ). To do this, we perform the search on
the change of variables xi, yi for 1 + xi, 1
+ yi. Now we calculate the new f (S ).

3. We find the linear change of variables x 1 ←
x 1 + d2x 2 + ... + d2nyn, which minimizes
the length of f (S ), searching on all di. Now
we calculate the new f (S ).

4. Alternately, we repeat step 3 for variables
x 2, . . . , yn.

5. If the minimum is not found, we repeat
steps 3 and 4. The resulting affine
equivalence is defined by vector c and
matrix product, determining a linear

change of variables. The affine equivalent
principal ideal is defined by a polynomial
f (S ).

6. Preparing the system of
boolean equations and its solution

The cipher that utilizes substitutions and
linear diffusing transformations is described by
a set of Zhegalkin polynomials. In this case,
nonlinear equations are defined by substitution.
Traditionally, nonlinear Boolean equations
describing the substitution are simple Boolean
functions describing the output bits after the
input has been changed. Such polynomials are
usually inconvenient for solving the system.

It is more convenient if the system of
equations is overdetermined: the number of
equations is greater than the number of
variables. This leads to the concept of the ideal.
Courtois proposed to minimize the degree of the
polynomials that define the ideal [2]. So, the
ideal of 8-bit AES substitution is described by 24
implicit quadratic equations.

Theoretically, polynomials of the form xi2

+ xi, defining properties of Boolean rings, may
be put into the ideal, with variety to be found,
or, first, we have to compute a Groebner basis
in a integral polynomial ring over a field ⊕2,
and then perform the reduction of the found
basis by ideal modulo, defining the Zhegalkin
polynomial ring. In this case, the found Groebner
basis should not change. However, since each
polynomial is a zero divisor, symbolic computing
packages, (e.g, MATHEMATICA) give the wrong
result of computing the Groebner basis for both
cases. Faugere suggested using polynomials xi2

+ xi separately, without calculating their syzygy,
but limiting the degree of the monomial syzygy
for each variable [1].

It seems more promising to define an ideal
substitution by shortest possible polynomials,
rather than minimize the degree of polynomials.
In this case the number of polynomials is much
bigger than the number of variables. Since the
solution of linear equations is simple, in order to
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minimize the length of the polynomials an affine
equivalence of ideals can be used, as well as an
approximate definition of the ideal using short
polynomials (this leads to a slight increase in the
power of the ideal variety).

Therefore, the proposed changes of algebraic
attacks on the cipher are performed at two stages.
At the preparation stage, the substitution ideal
is replaced by an affine equivalent ideal, which
can be defined by short polynomials (exactly or
approximately), and polynomials, corresponding
to this affine variables change, are introduced
into the resulting ideal, for which a variety is
being found. In addition, auxiliary ideal I is
compiled, consisting of polynomials xi2 + xi and
monomials, binomials, trinomials of substitution
ideals. In this case I ≡ 0 (mod A), V (I) ⊃ V (A)
respectively.

At the second stage the Groebner basis for
the resulting ideal is computed. In this case we are
searching for syzygies of nonlinear polynomials.
Note, that the syzygy of polynomials defining
substitution lies in the ideal substitution. To
reduce the length and degree each syzygy is
reduced modulo ideal I. Thus if the monomial
syzygy is divisible by any monomial ideal I, it
is removed. Binomial syzygies, divisible by ideal
I binomials and trinomials are also removed.
Besides, ideal I binomial C 1 + C 2, consisting of
two monomials means that the monomial syzygy,
devisable by C 1, can be replaced by a monomial,
devisable by C 2. If the syzygy has a sum in a
form A + B + C, where A + B and A + C
are devisable by ideal I binomials (binomial A +
C is obtained before deleting binomial A + B),
then it is obvious, that B + C is devisable by
ideal I binomials. That is why we obtain three
comparisons A + B + C ≡ A ≡ B ≡ C (mod
I). Which of the three options (or all) reduction
modulo I it is better to keep in the basis of the
main ideal can be chosen on account of the further
steps.

A similar argument is true for trinomials.
This reduction can be parallelized or executed by
computing hardware.

In fact, instead of polynomials defining ideal
A, we consider functions on the variety V (I).

Consequently, the found basis will be determined
to an accuracy of ideal I basis. To obtain the exact
solution after finding a basis in the ring of residue
classes modulo I we must attach ideal I basis to
the main ideal and then continue the computation
of the Groebner basis.

Another option for the solution of the system
of Boolean equations is calculation of Groebner
basis directly for auxiliary ideal I. Occurring
errors could be corrected by a statistical set
for the different pairs of plaintext − ciphertext,
by analogy with the linear and differential
cryptanalysis methods. If the error probability

p =
#V (J)−#V (I)

#V (J)
is small and there are

m substitutions at encryption input, then the
required number of plaintexts and ciphertexts
equals (1 − p)−m. For example, for m = 160 and
p = 0.9 it is required 2.107 texts.

Thus, in the computation of the Groebner
bases, high degree terms will be abrogated with
higher probability comparing to the small degree
terms. If we assume that the monomials in the
polynomial are distributed with equal probability,
in the result of a polynomial reduction modulo
I a higher probability is to keep small degree
terms, and reduce high degree terms. As a result
of reduction modulo I, the uniformity of the
initial monomial distribution is broken. Here we
have an analogy with the sieve method, where a
random number has small prime divisors with a
higher probability than large prime divisors (the
analogue of small prime divisors is small degree
monomials). The complexity of the sieve method
is subexponential. Therefore, we can assume, that
the complexity of the proposed algorithm would
be subexponential with a corresponding increase
in the amount of memory (assuming that the
reduction polynomial modulo I would perform
quicker than syzygy computation, which is not
obvious if the elements of the ideal I basis have a
length of 4 or more terms).

Obviously, the longer the polynomials
defining the basis of the ideal I, the harder it is
to perform reduction modulo I, but at the same
time it reduces the probability of error (number of
repetitions is reduced). Thus, there is an optimal
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length of an auxiliary ideal I basis when the
complexity of computing the Groebner basis is
minimal.

We can define a requirement for the
substitution selection: an ideal, defining the
substitution, must not have good binomial or
trinomial approximation in the class of affine
equivalent ideals.

7. Examples on preparation of
ideal substitution

1. Substitution S = {00, 1d, 2b, 38, 43, 56,
64, 71, 8f, 92, a5, be, ca, dc, e9, f7}. Here the first
byte tetrad corresponds to the input, the second
tetrad corresponds to the substitution output.

This substitution has the best cryptographic
properties: differentials probability 60.25, the
absolute predominance of linear sums 60.25. The
ideal substitution is defined by trinomials and
quadrinomials with probabilities (assuming that
the approximate ideal is divisible by substituting
ideal) 0.46 and 0.59 respectively.

The principal ideal substitution is defined
by a polynomial of length 161. Minimizing the
length of a principal ideal by affinity equivalence
results in ideal with a variety {6a, 6c, 6d, 7b,
9e, b7, bd, be, d6, d7, df, e3, e6, ec, f7, fa}
(first tetrad corresponds to variables x, second
tetrad corresponds to variables y), ideal length
is 17: 1 + x 2x 3y1y2 + x 2x 3x 4y1y2 + x 2x 3y1y3

+ x 1x 2x 3y1y3 + x 2x 3x 4y1y3 + x 1x 2x 3y2y3 +
x 1x 2x 4y2y3 + x 1x 4y1y2y3 + x 1x 2x 3y1y2y4 +
x 1x 3x 4y1y2y4 + x 1x 2x 3y3y4 + x 1x 2x 3x 4y3y4 +
x 2x 3y1y3y4 + x 1x 3x 4y2y3y4 + x 2x 3y1y2y3y4 +
x 1x 4y1y2y3y4. This ideal is defined by trinomials

and quadrinomials with probabilities of 0.40 and
0.84 respectively.

2. Substitution S = {09, 14, 2a, 3b, 4d, 51,
68, 75, 86, 92, a0, b3, cc, de, ef, f7} of cipher
SAES (short AES, simplified version of American
Encryption Standard [17]). Here, the first byte
tetrad corresponds to the input, the second tetrad
corresponds to the substitution output.

This substitution also has the best
cryptographic properties: differentials probability
60.25, the absolute predominance of linear
sums 60.25. Ideal substitution is defined by
trinomials and quadrinomials with probabilities
(assuming that the approximate ideal is divisible
by substituting ideal) 0.52 and 0.53 respectively.

The principal ideal substitution is defined
by a polynomial of length 107. Minimizing the
length of a principal ideal by affinity equivalence
results in an ideal with a variety {1f, 5f, 6d, 6f,
9f, af, b9, ba, be, d3, d6, db, ed, f2, f3, fd} (first
tetrad corresponds to variables x, second tetrad
corresponds to variables y), ideal length is 15:
1 + x 1x 2x 3x 4y3 + x 1x 3x 4y1y3 + x 1x 2x 4y2y3

+ x 1x 2x 4y1y2y3 + x 1x 3x 4y1y4 + x 1x 2x 3x 4y1y4

+ x 2x 3y1y2y4 + x 1x 3x 4y1y2y4 + x 2x 3x 4y1y2y4

+ x 1x 2x 4y3y4 + x 1x 2x 3x 4y3y4 + x 1x 3y1y2y3y4

+ x 4y1y2y3y4 + x 3x 4y1y2y3y4. This ideal is
defined by trinomials and quadrinomials with
probabilities of 0.76 and 0.89 respectively. Here
we see that the substitution SAES is worse than
the substitution of the first example.

In both examples, when searching a
reversible affine change of variables the task is to
minimize the length of the principal ideal that
defines substitution.
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