БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет прикладной математики и информатики Кафедра дискретной математики и алгоритмики

Аннотация к дипломной работе

«ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ОХЛАЖДЕНИЯ НЕПРЕРЫВНОЛИТОГО СТАЛЬНОГО СЛИТКА НА СУПЕРКОМПЬЮТЕРЕ»

ВОЛОСАТОВ Николай Юрьевич

Научный руководитель – кандидат физико-математических наук, доцент кафедры дискретной математики и алгоритмики С.В.Баханович

РЕФЕРАТ

Дипломная работа, 41 с., 20 рис., 4 табл., 15 источников.

Ключевые слова: ЧИСЛЕННЫЙ МЕТОД, ЗАДАЧА ТЕПЛОПРОВОДНОСТИ, ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ, СУПЕРКОМПЬЮТЕР.

Объект исследования — физико-математическая модель процесса охлаждения непрерывнолитого стального слитка.

Цель работы – разработка эффективного параллельного алгоритма численного решения двумерной нелинейной задачи теплопроводности для численного моделирования процесса охлаждения стального слитка.

Методы исследования — изучение литературы по теме работы, методы вычислительной математики, вычислительный эксперимент.

Результат — исследована задача решения двумерного нелинейного уравнения теплопроводности с краевыми условиями третьего рода; построена экономичная численная схема решения поставленной задачи; разработаны два параллельных алгоритма решения поставленной задачи; произведен анализ эффективности разработанных алгоритмов.

Область применения — численное моделирование процессов охлаждения стали в металлургии.

ABSTRACT

Graduation work, 41 p., 20 pictures, 4 spreadsheets, 15 sources.

Keywords: NUMERICAL METHODS, HEAT CONDUCTION PROBLEM, PARALLEL ALGORITHM, THE SUPERCOMPUTER.

Object of research – physical and mathematical model of the steel ingot cooling process.

Goal of research – to develop efficient parallel algorithms for numerical solution of two-dimensional nonlinear heat conduction problem for the numerical simulation of the steel ingot cooling.

Research methods – analysis of the subject of work relevant literature, methods of computational mathematics, computational experiment.

Result – the problem of solving the two-dimensional nonlinear heat equation with boundary conditions of the third kind was solved; an economical numerical scheme to solve this problem was built; two parallel algorithms to solve this problem were developed; the effectiveness of the developed algorithms was analyzed.

Application – numerical modeling of steel cooling industry.