

для исследуемых моделей: *I*– модель 2а, *2*–модель 1, *3* – модель 2 б, 4– модель 4, 5 – СМ

3. Модель, основанная на калибровочной группе E_6 . Рассмотрены следующие значения дополнительного параметра β :

За. $\beta = 0$ (λ модель).

3б.
$$\beta = \pi / 2$$
 (ψ модель).

3в. $\beta = -\arctan \sqrt{5/3}$ (η модель).

4. Модель, основанная на калибровочной группе $SU(3)_C \times U(1)_Y$.

На рис. 1 приведены графики полных сечений процесса

для исследуемых моделей.

В итоге был проведен анализ эффектов, выходящих за рамки Стандартной Модели, были предложены кинематические области возможных отклонений. На основе введенных дополнительных видов асимметрий предложен способ и стратегия дифференциации обсуждаемых моделей.

ОСОБЕННОСТИ ФИЗИЧЕСКИХ ХАРАКТЕРИСТИК КОМЕТЫ 17/Р ХОЛМСА

М. И. Астрейко

Кометы – самые протяженные тела Солнечной системы, несущие информацию о её реликтовых органических и неорганических веществах. Они состоят в основном из трёх частей: ядра, атмосферы (комы), окружающей ядро, и одного или нескольких хвостов. Атмосфера и хвост образуются вследствие истечения вещества из ядра кометы. Атмосферы комет состоят из нейтрального газа, плазмы и пыли.

Комета 17/Р Холмса была открыта Эдвином Холмсом 6 ноября 1892 года в результате внезапной вспышки. При этом она увеличила свою звёздную величину до 3^m. В октябре 2007 г. вспышка повторилась.

Были проанализированы гипотезы, версии и предположения о предполагаемых механизмах вспышек кометы 17/Р Холмса. Исключены наиболее неправдоподобные версии и предположения. Рассмотрены наиболее вероятные версии и модели вспышек.

Предложена модель, наиболее правдоподобно описывающая механизм вспышки. Исходя из этой модели под действием УФ-излучения,

солнечного ветра и космического излучения внутри некоторых полостей кометы происходит оксидация воды. Залежи перекиси водорода H_2O_2 в связи с периодическим охлаждением и нагреванием начинают перемещаться в другие области ядра. В определенный момент времени перекись попадает на участок с переходным металлом, металлическим соединением либо минералом, в частности содержащим Fe, который является катализатором в реакции:

$$2H_2O_2 => 2H_2O + O_2$$

На месте образования O₂ может также происходить взаимодействие кислорода с углеводородом и CO – реакция горения. Давление внутри пористой оболочки ядра быстро растёт и приводит к разрушению внешней оболочки кометы с выделением в космос огромного количества пыли вместе с кислородом, водой, угарным газом и углеводородом.

Ядра комет содержат до 40% протовещества, из которого образовалась Солнечная система. Поэтому их исследование позволит выявить состав этого протовещества, а также объяснить механизмы возникновения планет и Солнца. Кроме того, кометы можно использовать для зондирования состояний межпланетной среды и плазмы солнечного ветра на расстояниях до 10 а.е, а также – верхних слоев Солнца.

Рис.1. Карта интенсивности дифрагированного излучения: Степень потемнения пропорциональна интенсивности, q_x; α иq_z; с – компонента преданного волнового вектора и период решетки в направлении, параллельном и перпендикулярном границе раздела

ДИНАМИЧЕСКАЯ ТЕОРИЯ ДИФРАКЦИИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ НА ЧАСТИЧНО РЕЛАКСИРОВАННЫХ СТРУКТУРАХ

А. И. Бенедиктович, И. Д. Феранчук

Одним из основных методов неразрушающего исследования многослойных кристаллических структур является рентгеновская дифрактометрия высокого разрешения.

При применении динамической теории дифракции к структурам с переменными параметрами возникает трудность, связанная с тем, что излучение, дифрагированное на различных слоях кристалла, распространяется в различном для всех слоев направлении. В случае, когда с глубиной пленки изменяются концентрация одной из компонент твердого раствора и релаксация кристаллической решетки, распределение дифрагированного излучения было рассчитано с помощью метода искаженных волн, причем за нулевое приближение бралось решение динамической задачи о дифракции на субстрате, а дифракция на слое учитывалась в первом порядке теории возмущений. Рассчитанная зависимость интенсивности дифрагированного излучения от компонент переданного волнового вектора (карта интенсивности) при типичных параметрах приведена на *рис.* 1. Учет сферичности падающей волны приводит к интерференции волн, дифрагированных на близких слоях, что проявляется в появлении осцилляций в зависимости интенсивности дифрагированного излучения от q_z (см. рис. 1). Зная вид карты интенсивности по данным осцилляциям можно судить об изменении свойств пленки с глубиной, что представляет интерес для практических приложений.

РАСПРОСТРАНЕНИЕ РАБИ-ВОЛН В НИЗКОРАЗМЕРНЫХ ПОЛУПРОВОДНИКОВЫХ НАНОСТРУКТУРАХ

Г. Я. Слепян, Е. Д. Ерчак, С. А. Максименко

В работе построена теоретическая модель, описывающая взаимодействие одночастичного возбуждения в одномерной периодической цепочке из квантовых точек (КТ) с электромагнитным полем в режиме сильной связи. Отдельные КТ в цепочке рассматриваются в двухуровневом приближении и связаны друг с другом парным взаимодействием. Взаимодействие может иметь различную физическую природу (дипольдипольное взаимодействие, туннельный механизм и др.). Рассмотрены случаи классического и квантового внешнего электромагнитного поля.

Для вышеописанной модели получены уравнения движения и найдено их точное аналитическое решение. Анализ решения показал, что в системе имеет место распространение осцилляций Раби в пространстве в форме бегущих волн и волновых пакетов (Раби-волны). В случае бегущих волн, являющихся частным решением уравнений движения, имеются две различные собственные моды, каждая из которых есть суперпозиция основного и возбужденного состояний системы, парциальные амплитуды которых осциллируют как во времени, так и в пространстве. Связь основного и возбужденного состояний обусловлена взаимодействием света с цепочкой КТ и исчезает при его отсутствии. Т.к. каждая мода есть суперпозиция двух плоских волн с различными волновыми числами, то в системе имеет место дифракция: Раби-волны распространяют-