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In this paper we consider the problem of modeling noninertial processes with sto-
chastic dependence between the input variables. Such processes are called H-processes
("tubular" structure processes). A new class of parametric identification algorithms with
the indicator function of multidimensional static objects is suggested to use. The results of
some computational experiments are presented.
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INTRODUCTION

Of course, the problem of identification a long time remains one of the central problems of
cybernetics. Statement of the problem identification depends on the class of the investigated
process (static, dynamic, linear, nonlinear, and others types of processes) and on the amount of a
priori information about the investigated process.

In this paper we will focus on a new class of processes called "tubular" (or H-processes).
The  first  mention  of  the  process  with  "tubular"  structure  appears  from  the  author  Medve-
dev A.V. at [1]. These processes were observed in the simulation of metallurgy processes. It was
found that there was statistical dependence between the components of the entrance, so that the
process proceeds not in all domain identified by the technological regulations but in some of its
subdomains. Simulation of such processes is associated with many difficulties, in particular, the
traditional parametric methods do not produce a satisfactory identification result. H-processes
can be regarded as new and, to date, poorly understood. But the processes of this class are in-
creasingly found in practice, and therefore, require further study. Some studies H-processes are
presented in [2].

The main objective of this paper is to describe the processes of "tubular" type, as well as
to present some results of their simulations using developed algorithm.

THE  STATEMENT  OF  THE  PROBLEM

On  Fig.  1  the  table  of  symbols  are  accepted:  A  is  an  unknown  object  operator,
1Rxt )()(  is an output variable of the process, m

i Rumitutu )(,),()( 1  is a con-

trol action vector, (t)  is  a  vector  random  action,  (t) is continuous time, miG iu ,1, , xG  are
channels of connection corresponding to different variables and including control tools,

mitg iu ,),( 1 , )(tg x  are random interference of measurements corresponding to variables of
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the process with zero means and limited dispersion, miuit ,1, , xt are measurement of process
variables at discrete times.

Fig. 1. The general scheme of multidimensional object

So, we have a sample of observations "input-output" process variables },,,{ sixu ii 1 ,
where s – the sample size. Let the components of the input variables are linked by some un-
known stochastic dependence. The case where the input vector components are independent can
be illustrated by the following Figure 2:

Fig. 2. Sample of observations in case of independent components of output vector )(tu



391

Here, for simplicity, we consider the three-dimensional case, when ),( 21 uufx ,
];[, 1021 uu . The units of the sample are shown as sign "+" in the Fig. 2. As can be seen from

the figure, the value of one component u1(t) may correspond to a set of values components, and
vice versa. If there is dependence between the components of the input, the process has "tubu-
lar" structure. Such process is presented in Figure 3.

Fig. 3. Object with “tubular” structure

As can be seen from the Figure 3, the area of the process ),( xu  is, without loss of gene-
rality, the unit hypercube where 2

21 Ruuu ),( , 1Rx . The hypercube domain ),( xu  is al-
ways known in practice. For example, for the technological process values of "input-output" va-
riable is limited by the technological regulations. However, if the investigated has a "tubular"
structure, i.e. its input variables are linked stochastic dependence, the process proceeds not in all
space of a hypercube ),( xu , but in some of its subdomain ),(),( xuxuH , which we have
never known. Since the subdomain ),( xuH  is  not  known,  we do  not  know if  the  process  is
“tubular” or not. This is the main modeling difficulty of this kind of processes.

The complexity of the H-processes control is to select the input action u(t). The input ac-
tion u(t) should belong a subdomain )(uH , only in this case the output variable )(tx  would
take an acceptable value. Otherwise, the value of the output )(tx  can be either outside of tech-
nological regulations and not physically be implemented (for example, the value of element con-
tent will be a negative number) or be out of the "tube". The first case is less dangerous because
if the value of the output does not belong to technological regulations, this unit sample can be
eliminated.
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H-MODELS

Let consider modeling of process with "tubular" structure. Usually, the problem of identi-
fication of noninertial objects assumes some parameterized model which can be represented as a
surface in the space of "input-output" variables:

),()( ss ufux ,                                                            (1)
where s – the vector of parameters. In the case when the vector components of the input varia-
ble are statistically dependent, i.e. we deal with a "tubular" structure of the object, it is necessary
to use the indicator function. Model foregoing type must also be adjusted as follows:

)(),()( uIufux sss ,                                                        (2)
The following approximation can be taken as indicator estimation:
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1)sgn()( ,                                          (3)

where the smoothing parameter of kernel function cs and bell-shaped function j
i

j
s uuc 1

satisfy the conditions of convergence [3]. Parametric model (2) of "tubular" process containing
the indicator function (3) hereafter would be called the H-model.

The logic of the indicator (3) is  that  for an arbitrarily given value of the current variable
uu  indicator takes the value of unity if u  belongs to the "tubular" structure which is defined

by the available sample },,,{ siux ii 1 . If the value does not belong to the "tubular" structure,
the indicator is zero. Note that if the process is described by the surface in space, the model (2)
and (1) coincide. If the process has a tubular structure in this space, it is necessary to use a mod-
el (2).

COMPUTATIONAL  EXPERIMENT

Let the researched object be described by the system of the equations:

,
;sin

12

2
212

uu
uux

                                                        (4)

where 21,uu  – input variables of the process, normally distributed in the interval [0; 3];  and
 – random numbers distributed by uniform law in the interval [–0.05; 0.05]; x – the output va-

riable of the process. There is linear dependence between the components of input vector.
The parametric model (4) of the process (4) takes the following form:

2
2211 uux sin ,                                                        (5)

where 1, 2 – the model parameters. Parametric model of the process is chosen correctly, this
opportunity we have only within the computational experiments as we determines the nature of
the process. Setting the coefficients 1, 2 of the model (5) was carried out by OLS. Consider the
results presented in Figure 4.
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(The last inequality follows from (3.1) and Lemma 3.1 with ...,2,1),||(||)( 2/ nxVPxf p
n ).

Combining (3.4) we get (3.5) which completes the proof.

Remark: from the condition ,|||| 2/pVE  use the result in [2, p. 99] we get
).1()||(||2/ onVPn p  So the condition (3.2) on the random element V can be replaced by the

condition on sequences }{ na  and }{ nb  as )(|| 2/2/ p
n

p
n bOan  or ).(|| 2/2/ p

n
p

n boan
Corollary 3.2. Let }1...;,2,1;,{ , njnFV jnni  be an array rowwise adapted of random

elements in X, }1...;,2,1,{ njnVni  is  stochastically  dominated  by  random  element  V,
.|||| 2/pVE }{ nb  be a sequence of constants satisfy conditions ,0 nb  and )( 2/p

nbOn
(or )( 2/p

nbon ). Then

,0)]/)(||([1
1

1,
P

n

j
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n
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b

 as .n

Proof. Apply theorem 3.2 with .1,1 nan  Easy to see that the sequences }{ na  and
}{ nb  satisfy the condition (3.1) in theorem 3.2.

From 2/|||| pVE and )( 2/p
nbOn we have

),1()||(||~)||(|| 2/ obVPbbVnP n
p

nn  as ,n
which completes the proof.

In the case, when X = R then p = 2, by the setting as ...,,2,1,1 nan  and }{ nb  be the se-
quence satisfying: ,0 nb )( nbOn  (or )( nbon ), we get the weak law of large numbers
type of theorem 2.13 in [3] for array of random variables:

Corollary 3.3. Let }1...;,2,1;,{ , njnFV jnni  be an array rowwise adapted of random
variables, }1...;,2,1,{ njnVni  is stochastically dominated by random variable V, with

.||VE }{ nb  be a sequence of positive numbers with ,0 nb )( nbOn  (or )( nbon ).
Then writing .1),||(|| njbVIVU nnjnjnj  If
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then
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 as .n                                                (3.7)

Proof. With ,1,1 nan  easy to see that the sequences }{ na  and }{ nb  satisfy the condi-
tions (3.1) and (3.2) in theorem 3.2.

By the same way of the first part in proof of theorem 3.2, for arbitrary 0  we have

),()|)((| 1
1

obUVP
n

j
nnjnj                                              (3.8)

and

,0)]/([1
1

1,
P

n

j
jnnjnj

n

FUEU
b

 as .n                                (3.9)

Combining (3.6), (3.8) and (3.9) we get (3.7).
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