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Abstract

This paper is devoted to the numerical modeling and simulation of hydrodynamic and dissipation processes in

damper systems, where the working element is a magnetic fluid drop around a permanent magnet. Flow patterns and

dimensionless dissipation coefficient depending on the Reynolds number and magnet position are established.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The application of magnetic fluids as a working media

in damper systems [1–3] requires the study of hydro-

dynamic and dissipative properties of these systems.

From the hydromechanical point of view these

systems are presented by a double connected fluid

domain which boundary comprises external free surface

sections and solid walls. We consider a damper system

which consists of a magnetic fluid drop around a

permanent magnet placed between two plates with a

plane–parallel motion [3]. The magnet is magnetized

with a constant magnetization in the direction parallel to

the plates. The geometry of the damper system is

presented in Fig. 1.
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2. Statement of the problem

The behavior of a damper system is described

mathematically by a coupled system of nonlinear partial

differential equations with free boundaries.

A reduction of the model results in three subproblems,

the calculation of the magnetic field intensity in a fixed

domain, the calculation of new boundaries for the given

flow and magnetic data and, finally, the computation of

the flow in a fixed domain. The magnetic field around a

permanent magnet of a rectangular shape can be

calculated analytically [4]. If we neglect the capillary

forces then the free surface coincides with a line of a

constant magnetic field intensity value. This constant

value is determined by the volume conservation condi-

tion for the fluid. We consider a finite element solving

strategy for the flow part, which builds the main effort

within the overall algorithm.

The mathematical flow model is governed by the

following Navier–Stokes equations for two-dimensional

stationary incompressible flow under the action of
d.
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Fig. 1. Geometry of the damper system: 1—moving plates, 2—

nonmoving magnet, 3—magnetic fluid, 4—direction of the

moving

Fig. 2. Flow structures for the Reynolds number in the range

0:1oReo10 ((a) h2=h1 ¼ 1; (b) h2=h1 ¼ 0:2).
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magnetic forces in the non-gravity case [1]

�
1

Re
Duþ u � ruþ rp ¼ 0 in O

r � u ¼ 0 in O:

Here u, p denote the velocity and pressure, respectively,

Re the Reynolds number, O the fluid domain. The

boundary conditions on the free surfaces GF and solid

surfaces GM (the boundary of the magnet) and GP (the

boundary of the plates) complete the model

u � n ¼ 0; n � sðu; pÞ � t ¼ 0 on GF ;

u ¼ 0 on GM; u ¼ ð1; 0Þ on GP;

where sðu; pÞ is the hydrodynamic part of the stress

tensor, n; t unit normal and tangential vectors.

The quality of the damper system can be evaluated by

computing the energy dissipation [5]

E ¼ �Zu20lk; k ¼

Z
O

dui

dxj

þ
duj

dxi

� �
dO;

where Z is the dynamic viscosity, u0 the velocity of the

plates, ‘ the length in the coordinate direction perpen-

dicular to the cross section area, k the dimensionless

dissipation coefficient.
Fig. 3. The dependence of the dimensionless dissipation

coefficient k on the magnet position for Re ¼ 1:
3. Finite element discretization of the model

We discretizate the presented flow model by using the

isoparametric P2\P1 finite element approximation, i.e.,

the velocity u is approximated by quadratic functions

while the pressure p is approximated by linear functions.

The curved boundaries of the fluid domain require the

isoparametric approach. The isoparametric finite ele-

ment pair P2\P1 satisfies the Babus̆ka–Brezzi stability

condition, which guarantees a stable discretization of the

model problem. We consider a discretization where the

slip boundary condition u � n ¼ 0 on GF is incorporated

in the ansatz and the finite element space.
The discretization of the flow model corresponds to a

nonlinear algebraic system. The slip boundary condition

is incorporated directly in the nonlinear algebraic

system. The nonlinearity within the model is resolved

by using a fixed-point iteration (linearization of the

convective term). Thus, it remains to solve efficiently a

large linear systems in each nonlinear iteration step. The

geometric multigrid method is used as an effective

solver.
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Fig. 4. The dependence of the dimensionless dissipation

coefficient k on the magnet position for Re ¼ 1 in the complete,

upper and lower fluid domain.

Fig. 5. The dependence of the dimensionless dissipation

coefficient k on Reynolds numbers for the different magnet

positions h2=h1 ¼ f0:1; 0:25; 0:5; 1g:

Fig. 6. Flow structures for Re ¼ 300 ((a) h2=h1 ¼ 1;
(b) h2=h1 ¼ 0:1).
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4. Results of numerical simulations

We have obtained numerically the values of the

dimensionless dissipation coefficient and the flow

structures (streamlines) in a wide range of Reynolds
numbers. A position of the magnet is defined by the

ratio h2=h1 of its distances to the lower and upper plates,

respectively.

The numerical results show that the flow structure and

dissipation coefficient do not depend on the Reynolds

number in the range 0:1oReo10: The flow structure for

two different magnet positions are presented in Fig. 2.

For the symmetric position of the magnet (h2=h1 ¼ 1)

the flow structure is in a form of separate vortices.

However, a magnet displacement (e.g. at h2=h1 ¼ 0:2)
cause a cicular fluid motion around the magnet.

The value of the dissipation coefficient with Reynolds

number in the range 0:1oReo10 is mostly determined

by the location of the magnet inside the magnetic fluid

and takes the minimum value h2=h1 � 0:2520:28 as

shown in Fig. 3. By a displacement of the magnet the

area of the upper fluid subdomain is increased, however,

the gradients of the characteristic velocity in the same

subdomian are decreased. At the same time the area of

the lower fluid subdomain is decreased and gradients of

the velocity are increased. Increase (decrease) of the

velocity gradients results in the increasing (decreasing)

dissipation energy. Fig. 4 illustrates this effect.

The results of the numerical experiments show that

the flow structure and the values of the dissipation

coefficient depend on the Reynolds number in the range

Re410: As Fig. 5 presents, the values of the dissipation
coefficient k are increased by increasing of the Reynolds

number. The increasing of the Reynolds number results

in the displacement of the velocity vortices in the

direction of the moving plates (see Fig. 6).
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