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A numerical solution strategy for calculating equilibrium free surfaces of a magnetic fluid under the action of a magnetic field
is proposed and applied to determine shapes of a linear magnetisable ferrofluid drop in a uniform magnetic field. Hysteresis
phenomena for the drop deformation and the drop shapes with ends, close to conical, were observed numerically.

1 Introduction

The main objective of the work is to develop a numerical solution strategy for calculating equilibrium shapes of a ferrofluid
drop subjected to a uniform applied magnetic field. The free boundary value problem is governed by a coupled system of
Maxwell’s equations for the magnetic field distribution and Young-Laplace equation for the free surface shape. Maxwell’s
equations are formulated in the domain with ana priori unknown fluid-air interface. Both the drop shape and the magnetic
field have to be found simultaneously. We split the nonlinear system of equations into subproblems. The computational
process is realised in an iterative manner, where each subproblem is solved by a reliable numerical method. In the numerical
simulations we could observe hysteresis phenomena for the drop deformation and appearance of the drop shapes with ends,
close to conical, in the region of high magnetic fields.

2 Mathematical Model

We consider a ferrofluid drop of prescribed volume, surrounded by air and located in a uniform magnetic field oriented parallel
to thez-direction. The mathematical model is formulated in cylindrical coordinates(r, z, θ) under the assumption of the drop
shape to stay axisymmetric as it deforms with a change of the field strength.

Maxwell’s equations for a nonconducting media in the stationary case can be written in terms of a magnetic potentialϕ as

−div(µ(ξ)∇ϕ) = 0, ξ ∈ Ω; µ(ξ) =
{

1 + χ, ξ ∈ ΩF

1, ξ ∈ Ω \ ΩF
(1)

with H = −∇ϕ, both inside and outside the drop, whereH is the magnetic field vector. The computational domainΩ =
{ξ = (r, z) | r ≥ 0, z ≥ 0} consists of a fluid subdomainΩF and a subdomainΩ \ ΩF , filled with air. The magnetic fluid is
assumed to be linear magnetisable with a magnetisation lawM(H) = χH, whereχ is the constant magnetic susceptibility.
The boundary conditions on an interfaceΓ between two media with different magnetic permeabilitiesµ(ξ) must be satisfied

ϕ1 = ϕ2, (1 + χ)
∂ϕ1

∂n
=

∂ϕ2

∂n
onΓ, (2)

where the subscripts1 and 2 denote variables in the fluid and the air domains, respectively. We apply the condition for
the magnetic potential to be uniform at the axisOr and axially symmetric at the axisOz. We set the condition at infinity
ϕ2 = H0z such that far from the drop the magnetic field approaches a vertically directed uniform field with the intensityH0.

We describe the equilibrium shape of the ferrofluid drop by the parametric functionsr = r(s), z = z(s), wheres denotes
the arc length of the equilibrium lineΓ. The magnetically augmented Young-Laplace equation [4] can be formulated as in [3]

r′′ = −z′F, z′′ = r′F, 0 < s < `; F = −µ0

2σ

[
χH2 + χ2H2

n

]− z′

r
+ C, (3)

where` is the unknown arc length of the free surface meridian. Here,µ0 denotes the magnetic permeability,σ the surface
tension coefficient,H the magnetic field intensity,Hn the normal component of the field vector andC is an unknown constant.
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3 Numerical Solution Strategy

The numerical solution of the magnetostatic problem (1)-(2) for a fixed free surface shapeΓ is realised through the coupling of
the finite element method inside the fluid domainΩF and the boundary element method outside it. A direct boundary element
method is based on the Green’s representation formula [5]

c(ξ0)ϕ(ξ0)−
∫

Γ

ϕ(ξ)
∂ϕ∗ax

∂n
(ξ0, ξ)rdΓ +

∫

Γ

∂ϕ(ξ)
∂n

ϕ∗ax(ξ0, ξ)rdΓ = H0z
0 for ξ0 ∈ Ω \ ΩF , (4)

wherec(ξ0) is a geometric constant,ξ0 = (r0, z0), ϕ∗ax(ξ0, ξ) the axisymmetric fundamental solution [5],n the outward unit
normal vector toΩF . We approximate the boundaryΓ by a parametric cubic spline. As a method for discretising of the integral
equation (4) we use a point collocation method in the space of piecewise constant functions [2]. In the weak formulation for
the magnetostatic equation (1) insideΩF we consider the potentialϕ in Ω̄F and∂ϕ/∂n onΓ as unknown functions. We use a
standard Galerkin method to discretise the weak formulation with linear finite elements on a triangular grid. Each of the two
discrete systems has more unknowns than equations and has to be completed by the equations corresponding the continuity
requirements (2). The resulting system is solved by the Gaussian elimination method with pivoting for every fixed surfaceΓ.

The numerical solution of the free surface equations (3) for the given field distribution near the boundaryΓ is realised by
a finite difference method of second order on nonuniform grids [3]. Ana-priori adaptive method is used to construct the grid
on the boundaryΓ, which is dense near the peak of the drop [3]. To solve the corresponding nonlinear difference problem we
consider a two-layer iteration scheme [3].

The whole computational process is organised in an iterative manner. The initial boundaryΓ0 is defined as a meridian of
a spherical drop with the radiusR0. At first we solve the magnetostatic problem (1)-(2) for a fixed boundaryΓ (initial one
or last calculated shape). Then we define a new boundary position as a solution of the free surface equations (3) for the new
calculated field. The iterative process continues unless the change of the drop shape is smaller than a prescribed threshold.

4 Results

According to the theoretical and experimental results in [1] the drop deformation displays hysteresis as a function of the
applied field forχ > 20. The numerical results (Fig.1. left, circular markers) show quantitative agreement with the theoretical
ones (Fig.1. left, solid line) for the lower branch of the solution and only qualitative for the upper branch. The quantitative
difference seems to be connected with the assumption of the theoretical model [1] for a drop to be a spheroid for any applied
field. Shapes with pointed ends were observed experimentally in [1] and numerically (Fig.1. right) for high field strength.
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Fig. 1 The dependence of the drop elongation upon the magnetic field:χ = 21, Bm = µ0R0H
2
0/(2σ), a andb are lengths of the drop in

z- andr-directions, respectively. The solid line is a theoretical dependence, the circular markers are the numerical results. On the right side
numerically calculated shapes for differentBm are presented.Bm = 4.249 is the first turning point, where an abrupt elongation of the drop
is observed.
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