
TRANSFORMATION OF SINGULAR LIGHT BEAM TRANSVERSE
STRUCTURE IN RESONANT MEDIA

O. G. Romanov* and A. L. Tolstik UDC 535.34

The peculiarities of transformation of transverse structure for singular light beams propagating in a resonant
medium have been analyzed theoretically. The influence of nonlinear absorption, self-focusing, and defocusing
on the characteristics of optical vortices with different topological structure has been studied. The formation
conditions and parameters for singular spatially localized structures have been characterized.
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Introduction. A screw dislocation of a light-beam wave front appears as a screw surface with a special point
at which the field amplitude is equal to zero and the phase is undefined [1]. A phase shift in multiples of 2π occurs if
this singularity is avoided. Light beams with wave-front dislocations (optical vortices) that are observed in optical fields
with a complex transverse structure [2] and in laser cavities [3] or are produced as a result of light diffraction on computer
synthesized holograms [4] are constantly of interest to researchers because of numerous potential applications.

The propagation of singular light beams in nonlinear media is investigated in order to find the stability con-
ditions of their transverse and topological structure [5, 6], to study the waveguide properties of transverse localized op-
tical vortices in media with different types of nonlinearity [7–9], to analyze their polarization structure [10], and to
develop methods for transforming the topological structure through nonlinear interactions [11, 12]. Transformation of
the transverse structure of Bessel light beams in various nonlinear materials is widely investigated together with singu-
lar beams [13–15].

Herein features of the transformation of the transverse structure of singular light beams with the combined in-
fluence of nonlinear absorption and self-focusing (defocusing) of the radiation in resonant media are analyzed and the
conditions for forming localized transverse structures as dark soliton vortices are determined. The model of resonant
media that is used is suitable for describing the interaction of radiation with dye solutions and with activated crystals,
crystals with color centers, and vapors of complex organic compounds.

Theoretical Model of the Propagation of Singular Light Beams in Resonant Media. The propagation of
singular light beams in resonant media will be investigated using a truncated wave equation for the complex amplitude
of field E of the form [16]:
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where k = ωn0/c is the wave vector; ω, the light wave frequency; n0, the initial index of refraction (determined by the
solvent or material of the solid-state matrix); ∆� = ∂2 ⁄ ∂x2 + ∂2 ⁄ ∂y2, the Laplacian cross section; χnl = n0∆n^ ⁄ 2π, the
nonlinear susceptibility of the medium; and, ∆n^ is the light induced change of complex index of refraction of the reso-
nant medium.

Considering the frequency of the active laser radiation ω to be close to the center of any absorption band

of the compound ω12, we examine a two-level model of the medium. We start with the Kramers–Kronig relationship
in order to describe the spectral dependence of the index of refraction that is due to a resonance mechanism of non-
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linearity. This relates the real and imaginary parts of the complex index of refraction n^ = n + iκ [17]: n(ω) =

1
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 dω′, where κ(ω′) is the spectral dependence of the extinction coefficient that can be represented in the ex-

amined model of a nonlinear medium as [17]: κ(ω) = 
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 , N is the number of absorb-

ing centers per unit volume; v = c/n0, the speed of light in the medium; n2 = N2/N, the normalized value of the
population of the second (excited) energy level. The spectral dependence of the index of refraction is determined by

the expression n(ω) = 
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 , where coefficients Θij(ω) are related by Kramers–Kronig

relationships to Einstein coefficients Bij(ω).
The nonlinear susceptibility of the resonant medium is expressed in terms of the change of complex index of
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 is the linear extinction coeffi-

cient. Assuming the absorption and transmission curves coincide, Θ12 = Θ21. Then the change of index of refraction

of the resonant medium for steady-state excitation has the form: ∆n = −κ0 
Θ12
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 , where parameter α = (B12 +

B21)/vP21 determines the saturation intensity of the resonant transition (P21 is the total probability of spontaneous and
radiationless transitions).

We note that the nonlinear change of index of refraction for exact resonance (ω = ω12) reverts to zero
(∆n = 0) and the action of the light beam on the resonant medium consists of a light-induced change of the absorption
coefficient. If the laser radiation frequency is tuned to the short-wavelength part of the spectrum relative to the absorp-
tion band center (ω > ω12), the index of refraction of the medium is increased depending on the intensity of the light
beam (∆n > 0). This determines if the diffraction dispersion and subsequent self-focusing can be compensated. How-
ever, if the radiation frequency is tuned to the long-wavelength part of the spectrum (ω < ω12), the change of index
of refraction is negative (∆n < 0). This corresponds to defocusing of the light beam and its propagation in a nonlinear
medium.

Considering the explicit form of the nonlinear susceptibility of a resonant medium [18] χnl(ω) = 
n0κ0
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 , where the complex parameter of nonlinearity is determined by the expression α^  = a + iα =
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21) ⁄ vP12, the truncated wave equation (1) becomes:
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where k0 = 2ωκ0
 ⁄ c is the linear absorption coefficient. The first term in the right part of the equation accounts for

linear absorption and the phase advance; the second determines the effects of absorption saturation and the light-in-
duced change of complex index of refraction of the resonant medium.

During numerical modeling of Eq. (2) it was assumed that a light beam directed at the boundary z = 0 of the
nonlinear medium has a time-invariant profile along the transverse coordinate and contains a vortex phase dislocation

of topological charge m: E(z = 0, r, ϕ) = E0[r ⁄ r0]|m| exp ⎡⎣−(r ⁄ √⎯⎯2r0)2 + imϕ⎤
⎦ . Figure 1 shows the structure of such light

beams, where Fig. 1a–c show the transverse intensity distribution (maximum values are shown as white light); Fig.

1a′−c′, the phase distribution that changes from 0 (black light) to 2π (white light). We note that the instance m = 0
corresponds to a beam with a Gaussian intensity distribution and an initially planar wave front. The half-width of the
light beam at the entrance of the nonlinear medium is set to r0 = 200 µm; peak intensity of the beam varied in the

range αI0 = 0.1–10; radiation wavelength λ = 0.5 µm; radiation frequency tuning from the center of the absorption
band δ = (ω – ω12)/∆ = 0, ±2, where ∆ is the half-width of the Gaussian absorption curve and the initial absorption
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coefficient was taken as k0 = 0.05 cm–1. An absolutely stable two-step (three-layer) explicit method [19] that could

follow the evolution of the light beam at distances of the order of the diffraction line Ld = 2πr0
2 ⁄ λ was used in the

numerical calculations.
Discussion. Nonlinear absorption of singular light beams. It is well known [18] that the absorption coefficient

of a resonant medium decreases with increasing intensity of the light beam because of a bleaching effect [k(I) < k0].
This causes a deviation from the linear Buger absorption law. The linear (as a result of diffraction dispersion) and
nonlinear (because of self-focusing or defocusing) change of beam transverse dimensions must also be considered in
examining the interaction of light beams of finite transverse dimensions and complex structure with a resonant me-
dium. For example, self-focusing increases the concentration of energy in the axial region for a Gaussian peak. This
enhances saturation of the resonance transition and decreases the local absorption coefficient [20]. On the other hand,
defocusing of the beam leads to its transverse spreading and an increased fraction of absorbed energy per unit area of
beam.

The numerical experiments showed that these effects are more noticeable for singular light beams. Figure 2

shows the calculated change of light-beam power P(z) = 
cn0

2π
 ∫ 

0

2π

dϕ ∫ 

0

∞

⏐E(z, r, ϕ)⏐2rdr containing a phase dislocation of

the m-th order as a function of penetration depth into the resonant medium. We note that these functions were calcu-
lated for a single beam input power with different values of the topological order m and were normalized over P(z) =
0). The transverse coordinate z was normalized over the diffraction length of the light beam Ld. It can be seen that
the difference in the effectiveness of absorption of the Gaussian beam (curve 1) and singular beams (curves 2–4) is
insignificant if the frequency of the laser radiation coincides with the center of the absorption band of the resonant
medium (Fig. 2a) with the intensity of the light beams of the order of the saturation intensity of the resonant transi-
tion. However, the bleaching effect in the field of the Gaussian beam becomes more noticeable compared with the sin-
gular beams as the intensity increases (curves 1′−4′).

Figure 2b shows the calculations of the power change of singular beams for propagation in a medium with a
defocusing resonant nonlinearity that occurs for a negative frequency detuning from the center of the resonant transi-
tion. The spatially heterogeneous saturation of the resonant transition is significantly smoother at the selected parame-
ters of the nonlinear medium and radiation than in the first instance. This increases the effective absorption coefficient
and draws the absorption curves closer to the linear Buger law.

Fig. 1. Intensity distribution (a–c) and wave front of optical vortices (a′−c′)
with topological charge m = 1 (a, a′), 2 (b, b′), and 3 (c, c′).
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Figure 2c shows the case of focusing nonlinearity occurring with a positive frequency detuning from the cen-
ter of the resonant transition. Conditions sufficient for inducing self-focusing of the radiation are fulfilled for the se-
lected parameters of the Gaussian beam at a peak intensity of the order of the saturation intensity of the resonant
transition αI0 ~ 1. Thus, an inflection point near z ~ 0.5 is observed on the function P(z) (curve 1) that reflects a
local decrease of the absorption coefficient of the nonlinear medium near the greatest focusing of the radiation. As the
input intensity of the light beam increases further, multi-focused self-focusing that is evident as the presence of several
inflections on the function P(z) (curve 1′) may be observed. The self-focusing is evident for singular light beams at a
high input intensity (curves 2′ and 4′). However, as shown below, the transverse structure of such beams undergoes
more complex changes.

Formation of vortex solitons under defocusing nonlinearity conditions. A nonlinear medium in which the
index of refraction decreases with increasing intensity of the light beam can promote the formation of so-called dark
transverse solitons [21] that are characterized by localized gaps in the intensity of the transverse profile. Self-channel-
ing of the vortex structure of the wave front of a singular beam under such conditions leads to the formation of vortex
solitons, which have been observed experimentally in a medium with thermal nonlinearity [22], in rubidium vapor
[23], and in photorefractive crystals [24].

The numerical calculations show that the formation and destruction of the dark localized structure occurs in
several stages (Fig. 3 and Fig. 4a) for propagation of a singular light beam with a single topological charge in a reso-
nant medium with defocusing nonlinearity. A sharp narrowing of the singularity region (∆T(0.5) is the half-width of the
dark region at half intensity) that depends on the intensity occurs first and at z ~ 0.2, formation of a dark soliton and
approximate retention of its shape in the range z ~ 0.2–0.3. We note that the calculated profile of the light beam at

Fig. 2. Light-beam power as a function of penetration depth into a nonlinear
medium for k = 0.05 cm–1; r0 = 200 µm; ∆ = 0 (a), –2 (b), 2 (c); αI0 = 1
(1, 2), 0.5 (3), 0.167 (4), 10 (1′, 2′), 5 (3′), 1.67 (4′); m = 0 (1, 1′), 1 (2, 2′),
2 (3, 3′), 3 (4, 4′).
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z = 0.3 is shown by a solid line in the inset in Fig. 4a whereas the dashed line shows the intensity distribution over
the profile of the dark soliton ITC = I1 tan2 (x/a1) [25], which can be obtained by solving the nonlinear Schro

..
dinger

equation for Kerr-type defocusing nonlinearity. Upon further propagation, the light beam loses power as a result of ab-
sorption and the region of localization experiences diffraction spreading. The wave-front surface of the singular beam
is distorted also at all stages of propagation (Fig. 3, 1′−5′) because of the nonlinear modulation of the index of refrac-
tion in the area where the energy of the light beam is localized.

Self-focusing of optical vortices. The change of transverse structure of singular light beams in the self-focusing
regime (Fig. 3 and Fig. 4b) is determined by competition of nonlinear compression and diffraction spreading. Thus,
multi-focusing regimes of transverse structure modulation can be observed. We will introduce the parameters ∆V(0.5)
and ∆R(0.5) that determine the half-width of the optical vortex as a whole and the half-width of its light ring at half
intensity. Focusing of the light ring occurs in the first stage (z = 0–0.25) and, therefore, ∆R(0.5) decreases (Fig. 4b,
curve 2). Thus, the half-width of the optical vortex ∆V(0.5) (curve 2′) increases slightly. Then, the reverse process oc-
curs that is replaced by a general self-focusing of the singular beam after z = 0.5. The increase of the peak intensity
of the light beam near the nonlinear focus at z = 0.75 leads to saturation of the resonant transition and a substantial
decrease of the absorption near the beam localization. This enables the localized structure to be self-sustained upon
propagation in the nonlinear medium from z = 0.6 to z = 0.8. Then, diffraction spreading of the light beam becomes
the dominant process.

Fig. 3. Intensity distribution and wave front of optical vortices for k = 0.05
cm–1; r0 = 200 µm; m = 1; z = 0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5); 0 (6),
0.25 (7), 0.5 (8), 0.75 (9), 1 (10); ∆ = –2 (1–5, 1′–5′), 2 (6–10, 6′–10′); αI0
= 10 (1–5, 1′–5′), 5 (6–10, 6′–10′).
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The numerical calculations show that this scenario of transverse evolution of singular light beams under self-
focusing conditions in resonant media is not the only one possible. Its transverse structure can be destroyed if the initial
beam is additionally modulated under certain conditions. This is analogous to the situation examined previously [26] of
purely dispersive nonlinearity. However, a detailed investigation of this issue is beyond the scope of this article.

Conclusion. Peculiarities of the transformation of the transverse structure of light beams with a vortex dislo-
cation of the wave front are analyzed based on numerical solution of a truncated wave equation. The conditions for
self-focusing and defocusing of singular light beams in resonant media are determined. It is shown that self-modulation
of light beams as the result of nonlinear effects in the change of absorption coefficient and index of refraction of the
resonant medium can lead to the formation of self-localized transverse structures as dark solitons.
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