Математические заметки

том 52 выпуск 1 июль 1992

ОБОБЩЕНИЕ ТЕОРЕМЫ ХАРДИ—ЛИТТЛВУДА О ФУНКЦИЯХ С ПРОИЗВОДНОЙ ИЗ ПРОСТРАНСТВА H_1

А. А. Пекарский

Для функции f, аналитической в круге $D = \{z: |z| < 1\}, \ p \in (0, \infty]$ и $r \in [0, 1)$ положим

$$M_p(f,r) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt\right)^{1/p}$$
 при $0 , $M_\infty(f,r) = \max_{t \in [0, 2\pi]} |f(re^{it})|$ при $p = \infty$.$

Согласно определению (см., например, [4]) f принадлежит пространству Харди H_p , если

$$||f||_{H_p} := \lim_{r \to 1-0} M_p(f,r) < \infty.$$

Указанный предел существует ввиду неубывания $M_p(f,r)$. Функция $f \in H_p$ почти для всех $z \in \partial D$ имеет некасательные предельные значения, которые мы обозначаем также через f(z). При этом $M_p(f,1)$ совпадает с $\|f\|_{H_p}$.

Через **T** обозначим факторгруппу $\mathbb{R}\setminus 2\pi \mathbb{Z}$, которая каждому $x\in \mathbb{R}$ ставит в соответствие класс $\dot{x}=x+2\pi \mathbb{Z}$, содержащий x. Топология в **T** задается метрикой $d(\dot{x},\dot{y})=\min\{|x-y+2\pi k|:\ k\in \mathbb{Z}\}$. Пусть I — отрезок действительной оси или факторгруппа **T**. Через $L_p(I)$, 0, обозначаем пространство Лебега комплексных функций <math>g на I, наделенных стандартной квазинормой $\|g\|_p = \|g\|_{L_p(I)}$.

В теории пространств H_p хорошо известна следующая теорема

Харди — Литтлвуда (см. [1] и [2], а также [3]).

ТЕОРЕМА 1. Пусть функция $f = H_1$, $g(t) = f(e^{it})$ и $\omega(g_{s_i})$ — модуль непрерывности g в $L_1(\mathbf{T})$. Тогда следующие условия равносильны:

(a)
$$f \in H_1$$
;

(b) g n.в. на **T** совпадает с некоторой абсолютно непрерывной функцией;

(c) g n. в. на **T** совпадает с некоторой функцией ограниченной вариации;

(d) $\omega(g, \delta) = O(\delta) npu \delta \rightarrow 0$.

Наша цель дать обобщение этой теоремы для высших производных и пространств H_p . Для этого понадобятся следующие определения. Пусть I — отрезок, $s \in \mathbb{N}$, $0 и <math>0 < q < \infty$. Через $E_{s-1}(g, L_p(I))$, $g \in L_p(I)$, обозначим наилучшее приближение g в $L_p(I)$ алгебраическими полиномами степени не выше s-1. Функцию $g \in L_p(I)$ называем функцией ограниченной (p, s, q)-вариации, если существует такое число $V \ge 0$, что для всех $n=0, 1, 2, \ldots$ и всех разбиений

$$-\infty < t_0 < t_1 \le t_2 < t_3 \le \ldots \le t_{2n} < t_{2n+1} \le t_0 + 2\pi$$
 (1)

факторгруппы Т выполняется неравенство

$$\left[\sum_{k=0}^{n} E_{s-1}\left(g, L_{p}\left[t_{2k}, t_{2k+1}\right]\right)^{q}\right]^{1/q} \leqslant V. \tag{2}$$

Нижнюю грань чисел V, для которых верно (2) для всех разбиений (1), называем (p, s, q)-вариацией функции g и обозначаем через $V_{p, s, q}(g)$. Далее, g называем (p, s, q)-абсолютно непрерывной функцией, если для любого $\varepsilon > 0$ существует такое $\delta = \delta(\varepsilon) > 0$, что для любого разбиения (1), удовлетворяющего условию

$$\sum\nolimits_{k=0}^{n}(t_{2k+1}-t_{2k})\leqslant\delta,$$

неравенство (2) выполняется с $V = \varepsilon$.

Очевидно, функция (∞, 1, 1)-ограниченной вариации ((∞, 1, 1)-абсолютно непрерывная) совпадает п. в. на **T** с некоторой функцией ограниченной вариации (абсолютно непрерывной) в классическом смысле. Ранее понятия обобщенной вариации и обобщенной абсолютной непрерывности встречались в работах Н. Винера, Я. Петре, Ю. А. Брудного, Е. П. Долженко и других авторов.

Для $g \in L_p(\mathbf{T})$, $s \in \mathbf{N}$ и $h \ge 0$ введем также

$$\Delta_h^{s}(g,x) = \sum_{k=0}^{n} (-1)^{s-k} C_s^{k} g(x+kh)$$

- s-ю конечную разность с шагом h и

$$\omega_{p,\,s}(g,\delta) = \sup_{0 \leq h \leq \delta} \|\Delta_h^{\,s}(g,\,\cdot)\|_{L_p(\mathbf{T})}$$

— s-й модуль гладкости в $L_p(\mathbf{T})$.

Для функции f, аналитической в D, положим $f^{[i]}(z) = izf'(z)$ и $f^{[s]}(z) = (f^{[s-1]}(z))^{[i]}$ при $s = 2, 3, \ldots$ Иначе говоря, если $z = re^{it}$, то $f^{[s]}(z) = d^s f(re^{it})/dt^s$. Через H_{σ}^s , $0 < \sigma \le \infty$, обозначим множество функций f таких, что $f^{[s]} \in H_{\sigma}$. Согласно теореме Харди — Литтлвуда [2],

[4] имеют место вложения $H_{\sigma}{}^s \subset H_{\infty}$ при $\frac{1}{\sigma} \leqslant s$ и $H_{\sigma}{}^s \subset H_p$ при

$$0$$

Основным результатом данной статьи является

ТЕОРЕМА 2. Пусть $p \in (0, \infty]$, $s \in \mathbb{N}$, $\sigma = \left(s + \frac{1}{p}\right)^{-1}$, $f \in H_{\sigma}$ и $= f(e^{it})$. Тогда следующие условия равносильны:

(a) $f \in H_{\sigma}^{s}$;

(b) $g - (p, s, \sigma)$ -абсолютно непрерывна на T:

(c) $g - \phi y$ нкция ограниченной (p, s, σ) -вариации:

(d) $\omega_{\sigma,s}(g,\delta) = O(\delta^s)$ npu $\delta \to 0$.

За мечание. Импликация (а) \Rightarrow (d), хорошо известная для $\sigma \ge 1$, на случай $\sigma < 1$ была распространена Е. А. Стороженко [8] методом, отличным от данной работы.

Доказательству теоремы 2 мы предпошлем теоремы 3, 4 и

лемму 1.

$$\varphi(t) = \frac{1}{(s-1)!} \int_{t_0}^t (t-\tau)^{s-1} \varphi^{(s)}(\tau) d\tau, t \in [t_0, t_0 + 2\pi],$$
 (3)

и, следовательно.

$$\|\varphi\|_{\infty} \leqslant \frac{1}{s!} \|J^{s}\| \varphi^{(s)}\|_{\infty},$$
 (4)

где $|J| = |J(\phi)| = t_1 - t_0 - длина отрезка J. В дальнейшем важную роль играет величина$

$$\lambda_{s,\sigma}(\varphi) := |J|^{\frac{1}{\sigma}} ||\varphi^{(s)}||_{\infty}, \quad \sigma > 0.$$

Пусть $s \in \mathbb{N}$ и $0 < \sigma \le \infty$. Говорим, что функция g из $L_{\sigma}(\mathbf{T})$ принадлежит пространству \mathscr{H}_{σ}^{s} , если $g(t) = \operatorname{Re} f(e^{it})$, где $f \in H_{\sigma}^{s}$ и $\operatorname{Im} f(0) = 0$. Очевидно, такая функция f единственна. Квазинорму в \mathscr{H}_{σ}^{s} введем следующим образом:

$$||g||_{\mathcal{H}_{\sigma}^{s}} := ||f^{[s]}||_{H_{\sigma}^{s}}$$

ТЕОРЕМА 3. Пусть $s \in \mathbb{N}$, 0 <math>u $\sigma = \left(s + \frac{1}{p}\right)^{-1}$. Тогда функция $g \in L_{\sigma}(\mathbf{T})$ принадлежит \mathcal{H}_{σ}^{s} в том и только том случае, когда существуют постоянная $a \in \mathbb{R}$ и последовательность $\{\varphi_{k}\}_{k=1}^{\infty}$ s-простых функций, удовлетворяющих условиям

$$\left[\sum_{k=1}^{\infty} \lambda_{s,\sigma} (\varphi_k)^{\sigma}\right]^{1/\sigma} = : Q < \infty.$$
 (5)

$$a + \sum_{k=1}^{\infty} \varphi_k(t) = g(t) \text{ п. в. на T.}$$
(6)

При этом

$$\|g\|_{\mathcal{H}^{s}_{\sigma}}^{(1)} := \inf \{Q:$$
выполняются соотношения (5) u (6) $\}$

является квазинормой в \mathcal{H}_{σ}^{s} , эквивалентной $\|\mathbf{g}\|_{\mathcal{H}_{\sigma}^{s}}$.

Эта теорема является следствием результата Р. Койфмана [5] об атомическом разложении пространства $\operatorname{Re} H_{\sigma}$ при $\sigma \leq 1$, см. также [7].

$$h(t) = \frac{1}{s!} || \varphi^{(s)} ||_{\infty} \chi(t, J),$$

где $\chi(t,J)$ — характеристическая функция отрезка $J{=}J(\phi)$. Тогда для любого отрезка $I{\subset}\mathbf{T}$ имеет место неравенство

$$E_{s-1}\left(\varphi,L_{p}\left(I\right)\right)\leqslant\left(\int_{I}h\left(t\right)^{\sigma}\,\mathrm{d}t\right)^{1/\sigma}.\tag{7}$$

Доказательство заключается в рассмотрении следующих случаев (a) $I \subset T \setminus J$; (b) $J \subset I$; (c) $I \subset J$; (d) $I \cap J \neq \emptyset$, но $I \not\subset J$ и $J \not\subset I$. Случай (a) очевиден: $\varphi(t) = 0$ на I и, следовательно, $E_{s-1}(\varphi, L_p(I)) = 0$. В случае (b) неравенство (7) немедленно следует из (4):

$$E_{s-1}\left(\phi,L_{p}\left(I\right)\right)\leqslant\mid\mid\phi\mid\mid_{p}\leqslant\left(\int_{I}h\left(t\right)^{\sigma}\mathrm{d}t\right)^{1/\sigma}\,.$$

В случае (с) имеем (см., например, [6, с. 163])

$$E_{s-1}\left(\varphi,L_{\infty}\left(I
ight)
ight)\leqslant rac{\mid I\mid^{s}}{2^{2s-1}s!}\parallel \varphi^{\left(s
ight)}\parallel_{\infty}$$

и, следовательно,

$$E_{s-1}\left(\varphi,L_{p}\left(I\right)\right)\leqslant\frac{1}{s!}\left|I\right|^{s+\frac{1}{p}}\|\varphi^{(s)}\|_{\infty}=\left(\int_{I}h\left(t\right)^{\sigma}\mathrm{d}t\right)^{1/\sigma}.$$

В случае (d) предположим, например, что $I = [\alpha, \beta], J = [t_0, t_1]$ и $\alpha < t_0 < \beta < t_1 \le \alpha + 2\pi$. Тогда из (3) получим, что $|\phi(t)| \le \frac{1}{s!} (\beta - t_0)^s ||\phi^{(s)}||_{\infty}$ при $t \in [t_0, \beta]$ и, значит, $E_{s-1} (\phi, L_p(I)) \le \frac{1}{s!} (\beta - t_0)^{s + \frac{1}{p}} ||\phi^{(s)}||_{\infty} \le \left(\int h(t)^{\sigma} dt\right)^{1/\sigma}$.

ТЕОРЕМА 4. Пусть $s \in \mathbb{N}$, $0 , <math>\sigma = \left(s + \frac{1}{p}\right)^{-1}$ и $g \in \mathcal{H}_{\sigma}^s$. Тогда $g \in L_p(\mathbf{T})$ и существуют постоянная C = C(s, p) > 0 и неотрицательная функция $h \in L_\sigma(\mathbf{T})$ такие, что

$$||h||_{L_{\sigma}(\mathbf{T})} \leqslant C ||g||_{\mathcal{H}_{\sigma}^{s}} \tag{8}$$

и для любого отрезка $I \subset \mathbf{T}$ выполняется неравенство

$$E_{s-1}\left(g,L_{p}\left(I\right)\right) \leqslant \left(\int_{I} h\left(t\right)^{\sigma} dt\right)^{1/\sigma}.$$
(9)

Доказательство. Как отмечалось выше, $H_{\sigma}^{s} \subset H_{v}$ и, значит, $g \in L_{v}(\mathbf{T})$. Пусть $\varphi_{k} - s$ -простые функции из теоремы 3, а h_{k} — соответствующие им функции из леммы 1. Покажем, что

$$h(t) := \left[\sum_{k=1}^{\infty} h_k(t)^{\sigma}\right]^{1/\sigma}, \ t \in \mathbf{T},$$

удовлетворяет условиям (8) и (9). Действительно. (8) следует из теоремы 3:

$$||h||_{\sigma}^{\sigma} = \sum_{k=1}^{\infty} ||h_k||_{\sigma}^{\sigma} = \frac{1}{(s!)^{\sigma}} \sum_{k=1}^{\infty} \lambda_{s, \sigma} (\varphi_k)^{\sigma} \leqslant C^{\sigma} ||g||_{\mathcal{H}_{\sigma}^{s}}^{\sigma}.$$

Для доказательства (9) положим $q=\min\{1, p\}$ и воспользуемся теоремой 3 и леммой 1. Для любого отрезка $I \subset T$ из (6) получаем

$$E_{\tilde{s}-1}(g, L_p(I))^q \leqslant \sum_{k=1}^{\infty} E_{s-1}(\varphi_k, L_p(I))^q \leqslant \sum_{k=1}^{\infty} \left(\int_I h_k(t)^{\sigma} dt \right)^{q/\sigma} \leqslant \left(\sum_{k=1}^{\infty} \int_I h_k(t)^{\sigma} dt \right)^{q/\sigma} = \left(\int_I h(t)^{\sigma} dt \right)^{q/\sigma}. \blacksquare$$

Доказательство теоремы 2 осуществляется по схеме (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) \Rightarrow (a). Импликация (a) \Rightarrow (b) следует из теоремы 4: функции Re $f(e^{it})$ и Im $f(e^{it})$ принадлежат \mathcal{H}_{σ}^{s} . Импликация (b) \Rightarrow (c) очевидна: достаточно в определении (p, s, σ) -абсолютной непрерывности положить $\delta = 2\pi$.

Получим импликацию $(c)\Rightarrow (d)$. Для $h\in \left(0,\frac{2\pi}{s}\right]$ положим $m==\left[\frac{2\pi}{h}\right]$. $A_j=\left[\frac{2\pi j}{m}\cdot\frac{2\pi (j+1)}{m}\right]$ и $I_j=\left[\frac{2\pi j}{m}\cdot\frac{2\pi (j+s+1)}{m}\right]$. Через P_j обозначим полином степени не выше s-1 наилучшего $L_r(I_j)$ -приближения функции g. Для $k=0,1,\ldots,s$ и $j=0,1,\ldots,m-1$ имеем $\left[\frac{2\pi j}{m}+kh,\frac{2\pi (j+1)}{m}+kh\right]=:I_{jk}\subset I_j$ и. следовательно,

$$\|\Delta_{h}^{s}(g,\cdot)\|_{\sigma^{\sigma}} = \int_{\mathbf{T}} |\Delta_{h}^{s}(g,t)|^{\sigma} dt = \sum_{j=0}^{m-1} \int_{A_{j}} |\Delta_{h}^{s}(g-P_{j},t)|^{\sigma} dt \leqslant$$

$$\leqslant \sum_{j=0}^{m-1} \int_{A_{j}} \left(\sum_{k=0}^{s} (C_{s}^{k})^{\sigma} |g(t+kh)-P_{j}(t+kh)|^{\sigma} \right) dt \leqslant$$

$$\leqslant (s2^{s})^{\sigma} \sum_{j=0}^{m-1} \int_{I_{j}} |g(t)-P_{j}(t)|^{\sigma} dt.$$

Согласно условию (c) g является функцией ограниченной (p, s, σ) -вариации, τ . е. существует такое $V \ge 0$, что неравенство (2) выполняется при $q = \sigma$ для любого разбиения вида (1). Для $k = 0, 1, \ldots, s$ через N_k обозначим множество чисел $j = 0, 1, \ldots, m-1$, удовлетворяющих условию $j = k \pmod{(s+1)}$. Отрезки $\{I_j\}_{j \in N_k}$ пересекаются разве лишь по граничным точкам. Поэтому, применяя неравенство

Гёльдера, из (2) получим

$$\begin{split} \Lambda_k &:= \sum\nolimits_{j \in N_k} \int_{I_j} |g\left(t\right) - P_j\left(t\right)|^{\sigma} \, \mathrm{d}t \leqslant \\ &\leqslant \sum\nolimits_{j \in N_k} |I_j|^{1 - \frac{\sigma}{p}} E_{s-1}(g, L_p(I_j))^{\sigma} \leqslant \left(\frac{2\pi \left(s+1\right)}{m}\right)^{1 - \frac{\sigma}{p}} V^{\sigma}. \end{split}$$

Таким образом, получаем импликацию (c) ⇒ (d):

$$||\Delta_h^s(g,\cdot)||_{\sigma} \leqslant s2^s \left(\sum_{k=0}^s \Lambda_k\right)^{1/\sigma} \leqslant C(s,p)h^sV.$$

Для доказательства импликации (d) ⇒ (a) введем вспомогательцую функцию

$$f_{h, s}(z) = \sum_{k=0}^{s} (-1)^{s-k} C_s^k f(ze^{ikh}), \quad h > 0,$$

принадлежащую пространству H_{σ} . Согласно условию $\omega_{\sigma,s}(g,\delta) = -O(\delta^s)$ при $\delta \to 0$ и, значит, существует такое K > 0, что при всех h > 0 справедливо неравенство

$$M_{\sigma}(f_{h,s}, 1) \leq Kh^{s}$$
.

Ввиду неубывания $M_{\sigma}(f_{h,s}, r)$ относительно $r \in [0, 1]$ отсюда получим, что

$$M_{\sigma}(h^{-s}f_{h,s}, r) \leqslant K$$
 при $0 \leqslant r \leqslant 1$.

Фиксируя здесь $r \in [0, 1)$ и полагая $h \to 0$, будем иметь

$$M_{\sigma}(f^{[s]}, r) \leq K. \blacksquare$$

Пространства H_{σ}^{s} и \mathcal{H}_{σ}^{s} важную роль играют в задачах рациональной аппроксимации [9]. Теоремы 1, 2 и 3 позволяют ввести новые эквивалентные квазинормы в этих пространствах. Например, имеет место

Следствие. Пусть s \in \mathbb{N} , 1 \leq p \leq ∞ , $\sigma = \left(s + \frac{1}{p}\right)^{-1}$, g \in L_1 (\mathbf{T}) и \tilde{g} — сопряженная функция. Тогда g \in \mathcal{H}_{σ} в том и только том случае, когда выполняется хотя бы одно из условий

$$||g||_{\mathcal{H}_{\sigma}^{(s)}}^{(2)} s := \overline{\lim_{\delta \to 0}} \, \delta^{-s} \left[\omega_{\sigma, s}(g, \delta) + \omega_{\sigma, s}(\tilde{g}, \delta)\right] < \infty,$$

$$||g||_{\mathcal{H}_{\sigma}^{(s)}}^{(3)} := V_{p, s, \sigma}(g) + V_{p, s, \sigma}(\tilde{g}) < \infty.$$

 Π ри этом $\|g\|_{\mathcal{H}_{\sigma}^{s}}^{(2)}$ и $\|g\|_{\mathcal{H}_{\sigma}^{s}}^{(3)}$ являются квазинормами в \mathcal{H}_{σ}^{s} , эквивалентными $\|g\|_{\mathcal{H}_{\sigma}^{s}}$.

Гродненский государственный университет им. Я. Купалы

Поступило 17.12.91

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

- Hardy G. H., Littlewood J. E. Some new properties of Fourier constants // Math. Ann. 1927. V. 97. P. 159-209.
 Hardy G. H., Littlewood J. E. Some properties of fractional integral I. II // Math. Z. 1928. V. 27. P. 565-605; Math. Zeitschr. 1932. V. 34. P. 403-439.
 Smirnov V. I. Über die Ränderzuordnung bei Konformer Abbildung // Math. Ann. 1933. V. 107. P. 313-323.

- [4] Зигмунд А. Тригонометрические ряды. Т. 1, 2. М.: Мир, 1965. [5] Соіfman R. R. A real variable characterization of H^p // Stud. Math. 1974. V. 51, № 3. P. 269-274.
- [6] Даугавет И. К. Введение в теорию приближения функций. Л.: Изд-во ЛГУ, 1977.
- [7] Кротов В. Г. Дифференциальные свойства граничных функций из про-
- странства Харди // Math. Nachr. 1986. V. 126. P. 241–263. [8] Стороженко Э. А. О теоремах типа Джексона в H^p , 0 // Изв. АН СССР. Сер. мат. 1980. Т. 44, № 4. С. 946–962.
- [9] Пекарский А. А. Прямые и обратные теоремы рациональной аппроксимании. Дисс. ... докт. физ.-мат. наук, М.: Библ. МГУ им. М. В. Ломоносова, 1990.