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Abstract. The present work presents the obtained equation of character-
istics (equation of removable discontinuities) for the system of equations of
the anisotropic elastic medium motion with consideration of piezoelectric ef-
fect. The system of bicharacteristics is built on the basis of the characteristic
equation’s solution, and this system determines the coordinates of the elastic
medium’s points, which were reached by the energy of wave perturbation, which
is spread from a point nonstationary source, up to an undefined moment of
time. There are examples of the construction of the three-dimensional fronts
of quasilongitudinal and quasitransversal waves for the piezoelectric crystals,
which belong to the cubic and trigonal systems of symmetry.

1 Introduction.

The objectives of the deformed solid body mechanics, which are connected with the
study of wave fields in anisotropic media, are among the most complicated and im-
portant ones both in the theoretical sense and from a practical point of view. Their
topicality is conditioned by the constantly growing need of practical application of
the results of the new scientific studies in the contemporary branches of science and
engineering, and also by the necessity of formation of demonstrable physical ideas
about the behavior of waves of different types in anisotropic media [1]. At the same
time, up to now not so many cases of applying the analytical approaches to the
solution of the dynamic problems of continuum mechanics were known, which is
connected with the desire of researchers to be freed from the superfluous unwieldi-
ness of calculations and results. This led to the significant delay in the development
of the traditional methods, such as the method of characteristics (method of remov-
able discontinuities) and the method of strong discontinuities [2, 3]. At the same
time, facilities and means of the contemporary systems of computer mathematics
make the solution of the highly complex dynamic problems accessible and allow to
mathematically simulate wave processes in continuous media on the basis of the
method of characteristics. The present paper shows the representation of the re-
sults of the method’s application for the simulation of the wave motions, which are
spread from the nonstationary point source in anisotropic elastic media, considering
piezoelectric effect.
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2 Characteristics equation.

When analyzing waves’ propagation in piezoelectric media in general, the equation
of motion and Maxwell equation are to be solved simultaneously. The solutions are
the mixed elastic-electromagnetic waves with the velocity of propagation V , accom-
panied by electric field, and electromagnetic waves with the velocity of propagation
v ≈ V · 105, accompanied by mechanical deformation [1]. For the first wave mode it
is possible to disregard the magnetic field, which is created by electrical one, moving
at the velocity, which is rather low in comparison with the speed of electromagnetic
waves. Thus, even in the strong piezoelectric media the interaction between the
elastic and electromagnetic waves proves to be weak because of a large difference in
the corresponding speeds. Therefore, the propagation of waves can be examined in-
dependently, in the quasistatic approximation. In this case, the equation of motion
can be represented in the following way [1]:

3∑

j,k,l=1

Aijkl
∂2ul

∂xj∂xk

+
3∑

i,j,k=1

ekij
∂2Φ

∂xj∂xk

− ρ
∂2ui

∂t2
= 0,

3∑

j,k,l=1

∂2ul

∂xj∂xk

−
3∑

j,k=1

εjk
∂2Φ

∂xj∂xk

= 0,

(1)

Here Aiksq is the elastic constants; ejkl is piezoelectric modules, εjk is dielectric con-
stants; ul is the displacement vector components; ρ is medium density; Φ is electric
potential. For the constants of elasticity the following equalities are carried out:
Aijkl = Aklij, Aijkl = Ajikl and Aijkl = Aijlk. Thus, the number of independent con-
stants composes 21. Piezoelectric modules are symmetrical on two sequential indices
j and k (eijk = eikj), therefore the number of independent piezoelectric modules is
equaled to 18. The pairs of indices can take six different values, designated by the
numbers α and β, according to the following rule:

Aijkl = Aαβ, eijk = eiα, i, j, k, l = 1, 3, α, β = 1, 6,

(1, 1) → 1, (2, 2) → 2, (3, 3) → 3, (2, 3) → 4, (1, 3) → 5, (1, 2) → 6.

Let us preset initial conditions to system (1) on the surface z(x1, x2, x3, t) = 0 and
switch over to new variables according to the following circuit:

gi = zi(x1, x2, x3, t), g = z(x1, x2, x3, t), i = 1, 3. (2)

Expressing derivatives regarding the old variables through the derivatives regarding
the new variables, we will obtain:

∂f

∂xk

=
3∑

m=0

∂f

∂gm

∂zm

∂xk

,
∂2f

∂xk∂xl

=
3∑

m,n=0

∂2f

∂gm∂gn

∂zm

∂xk

∂zn

∂xl

+
3∑

m=0

∂f

∂gm

∂2zm

∂xk∂xl

,

g ≡ g0, z ≡ z0, t ≡ x0, i = 1, 3, k, l = 0, 3.

(3)
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Let us substitute expressions (3) by equations (1) and extract those terms, which

contain the derivatives of the second order, ∂2ui

∂g2 and ∂2Φ
∂g2 , as only they will be im-

portant for the following steps. As a result, we will have:

3∑

j,k,l=1

Aijkl
∂2ul

∂g2
pjpk +

3∑

k,i,j=1

ekij
∂2Φ

∂g2
pjpk − ρ

∂2ui

∂g2
p2

0 + . . . = 0,

3∑

j,k,l=1

ejkl
∂2ul

∂g2
pjpk −

3∑

j,k=1

εjk
∂2Φ

∂g2
pjpk + . . . = 0, i = 1, 3.

(4)

Here pi = ∂z
∂xi

, p0 = ∂z
∂t

. From the initial conditions of system (1) it is possible to find
all partial derivatives of the second order, except the derivative of the second order
on g. The missing derivatives can be defined from the four equations (4), which

can be considered as a system of algebraic equations, relative to the derivatives ∂2ui

∂g2

and ∂2Φ
∂g2 , i = 1, 3. In order to simplify system (4) let us express from it the fourth

equation and the partial derivative of the second order of the electric potential Φ
and let us substitute it by the first three equations. After simple conversions we will
have the following:

∑3
j,k,l=1 ejkl

∂2ul

∂g2 pjpk∑3
j,k=1 εjkpjpk

3∑

k,i,j=1

ekijpjpk+

+
3∑

j,k,l=1

Aijkl
∂2ul

∂g2
pjpk − ρ

∂2ui

∂g2
p2

0 + . . . = 0, i = 1, 3.

(5)

The partial derivatives of the second order can have gaps on the surface z(x1, x2, x3, t) =
0 only when equality to zero definitions, comprised of the coefficients with these
derivatives in system (5), is fulfilled:

det ‖ wil ‖3×3= 0, (6)

were wil =
∑3

j,k=1(Aijklpjpk + ejklekijSp2
jp

2
k)− ρp0δil,

1
S

=
∑3

j,k=1 εjkpjpk, i, l = 1, 3,
δil - Kroneker’s symbol. Revealing the determinant (6), after simple conversions we
will obtain a nonlinear differential first order equation:

q0p
6
0

c6
2

+
q1p

4
0

c4
2

+
q2p

2
0

c2
2

+ q3 = 0. (7)

The coefficients of equation (7) take the following form:

q0 = −1, q1 =
3∑

i,j,k=1

(aijkipjpk + sKjkiKkijp
2
jp

2
k),

q2 =
3∑

j,k=1

((
3∑

i,l=1

(aijklaljki − aijkialjkl)− s

(
3∑

i,l=1

aijkiKkljKjkl−
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−
3∑

i=1

aijkiKkijKjki −
(

3∑

i,l=1

aijklKkijKjkl −
3∑

i=1

aijkiKjkiKkij

))
pjpk

)
p2

jp
2
k

)
,

q3 =
3∑

j,k=1

(
1

3

3∑

i,l,m=1

aijklaljkmaijkm − 1

2

3∑

i,l,m=1

a2
ijklamjkm +

1

6

3∑

i,l,m=1

aijkialjklamjkm

)
×

×p3
jp

3
k −

s

2

3∑

j,k=1

(
3∑

i,l,m=1

a2
ijklKjkmKkmj + 2

3∑
i=1

a2
ijklKjkiKkij−

−
3∑

i,l=1

(a2
ijklKjklKklj + a2

ijkiKjklKklj + a2
ijklKjkiKkij)

)
p4

jp
4
k+

+
s

2

3∑

k,j=1

(
3∑

i,m,l=1

aijkialjklKjkmKkjm +
3∑

i,m=1

(2aijkiamjkmKjkiKkji−

−a2
ijkiKjkmKkjm) + 2

3∑
i=1

a2
ijkiKjkiKkji

)
p4

jp
4
k +

3∑

k,j=1

(
3∑

i,l,m=1

aijklamjklKjkmKkij−

−
3∑

i,m=1

(a2
ijkmKjkiKkij + aijkiaijkmKjkmKkij + aijkiaijkmKjkiKkmj)+

+2
3∑

i=1

a2
ijkiKjkiKkij

)
p4

jp
4
k−

−s

3∑

k,j=1

(
3∑

i,l,m=1

aijklamjkmKjklKkij −
3∑

i,m=1

(aijkiamjkmKjkiKkij+

+aijkiaijkmKjkiKkmj + aijkiaijkmKjkmKkij) + 2
3∑

i=1

a2
ijkiKjkiKkij

)
p4

jp
4
k.

Here s =
∑3

i,j=1 kijpjpk, aijkl =
Aijkl

A2323
, Kijk =

eijk√
A2323ε11

are constants of electrome-

chanical coupling, kij =
εij

ε11
are nondimentional dielectric, c2 =

√
A2323

ρ
. Let us

examine the equation of characteristics (7) as the algebraic equation of the third
order relative to p2

0. After simple conversions we will obtain:

p
(n)
0 = c2

√
2

√
−p

3
cos

(
Λ + 2π(4− n)

3

)
− q1

3q0

,

Λ = arccos


−q

2

√
−

(
3

p

)3

 ,

(8)
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where p = − q2
1

3q2
0

+ q2

q0
; q =

2q3
1

27q3
0
− q1q2

2q2
0

+ q3

q0
, n = 1, 3, superscript indicates the type of

the elastic wave. For constructing the discontinuity surface (front) of the wave on
the basis of differential equations (8) in the partial derivatives of the first order, one
should build the system of bicharacteristics (rays), which corresponds to the desired
wave front [3]. In this case the bicharacteristics are defined as the solutions of the
following systems of ordinary differential equations [2, 3]:

dx
(n)
s

dt
=

∂p
(n)
0

∂ps

, n, s = 1, 3. (9)

Substituting expressions (8) into equations (9) and taking into account the fact that
their right side does not depend on time, we will obtain formulas for the dimension-

less coordinates x
(n)
s

c2t
, s, n = 1, 3 medium points, which were reached by the wave

perturbation:

x
(n)
s

c2t
=

1

vn

(
1

2
√−3p̂

(
2q̂1q1s

3q2
0

− q2s

q0

)
cos

(
Λ̂ + 2π(4− n)

3

)
−

− 1

3

√
− p̂

3
sin

(
Λ̂ + 2π(4− n)

3

)√
p̂3

4p̂3 + 27q̂2
×

×
((

2q̂2
1q1s

9q3
0

− q̂2q1s + q̂1q2s

3q2
0

+
q3s

q0

)√
−

(
3

p̂

)3

−

− 9q̂
√

3

2

√
−

(
1

p̂

)5 (
2q̂1q1s

3q2
0

− q2s

q0

)))
.

(10)

Here v1 is the speed of quasilongitudinal piezoactive elastic wave propagation, v2

and v3 are the speeds of quasitransversal piezoactive elastic waves propagation. The
speeds vn are determined by formulas, analogous to relationships (8). Expressions
for the coefficients q̂s, p̂, q̂ and Λ̂ we obtain from the coefficients qs, p, q and Λ
accordingly by the replacement of the parameters pk to the direction cosines of
normal to the characteristic surface nk = cos(αk) (αk the angle between the normal
to the wave surface and the coordinate axis xk). The expressions for qij, i, j = 1, 3
have the form of:

q1j =
3∑

i,k=1

(aijklnk + sKjkiKkijnjn
2
k(2− skjknjnk)),

q2j = 2
3∑

j,k=1

((
3∑

i,l=1

(aijklaljki − aijkialjkl)njn
2
k−

−
(

3∑

i,l=1

(aijkiKkljKjkl + aijklKkijKjkl)−
3∑

i=1

aijkiKkijKjki

)
×
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×
(

1− 1

2
njnkskjk

))
sn2

jn
3
k

)
,

q3j = 3
3∑

j,k=1

(
3∑

i,l,m=1

(aijkl(
1

3
aljkmaijkm − 1

2
aijklamjkm) +

1

6
aijkialjklamjkm)

)
n3

jn
3
k−

−1

2

3∑

j,k=1

(
3∑

i,l,m=1

aijklKjkmKkmj + 2
3∑

i=1

a2
ijkiKjkiKkij−

−
3∑

i,l=1

(a2
ijkl(KjklKklj + KjkiKkij) + a2

ijkiKjklKklj)

)
(4− kjknjnks)n

3
jn

4
ks+

+4
3∑

j,k=1

(
3∑

i,l,m=1

aijklamjklKjkmKkij−

−
3∑

i,m=1

(a2
ijkmKjkiKkij + aijkiaijkmKjkmKkij + aijkiaijkmKjkiKkmj)+

+2
3∑

i=1

a2
ijkiKjkiKkij

)
n3

jn
3
k −

3∑

j,k=1

(
3∑

i,l,m=1

aijklamjkmKjklKkij−

−
3∑

i,m=1

(aijkiamjkmKjkiKkij + aijkiaijkmKjkiKkmj + aijkiaijkmKjkmKkij)+

2 +
3∑

i=1

aijkiKjkiKkij

)
(4− skjknjnk)sn

3
jn

4
k, s =

3∑

j,k=1

kjknjnk.

In formulas (8) and (10) the superscript n = 1 it corresponds to quasilongitudinal
wave, n = 2, 3 - to quasitransversal waves.

3 Examples of the construction of wave fronts.

The presence of one or another symmetry of anisotropic medium leads to the ap-
pearance of specific ratios between the constants Aijkl and eijk, in view of which
the number of independent components becomes less than 21 and 18 respectively.
A quantity of dielectric constants for the anisotropic media of different systems of
symmetry does not exceed three. Let us further examine the piezoelectric crystals
of the cubic and trigonal system of symmetry. In the case of the cubic system of
symmetry they are the independent constants of elasticity A11, A12 and A44, by
the independent piezoelectric module e14. For the dielectric constants the following
equality is carried out: ε11 = ε22 = ε33. Fig. 1 represents the three-dimensional
fronts of quasi-longitudinal and quasitransversal waves, which are extended from
point nonstationary source in germanate of bismuth. During the construction we
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Figure 1: Three-dimensional fronts of the elastic piezoactive waves, stretching in
the germinate of bismuth: 1 - a quasilongitudinal wave: 2 - a quasitransversal wave
with the speed of v2; 3 - a quasitransversal wave, having the speed v3.

Figure 2: Three-dimensional fronts of the elastic piezoactive waves, stretching in the
gallium arsenide: 1 - a quasilongitudinal wave: 2 - a quasitransversal wave with the
speed of v2; 3 - a quasitransversal wave, having the speed v3.

assume the following material constants: A11 = 128, A12 = 30.5 and A44 = 25.5
HPa, e14 = 0.99 Cl/m2, ε11 = 3.42 pF/m [1].

It is evident from figure 1 that the propagation of quasitransversal waves in lead
occurs with the formation of lacunas. Thus, at the front of the quasitransversal
wave, which is extended with a speed v2, there appear twelve lacunas in the form of
tapered strips. At the front of another quasitransversal wave a complex system of
lacunas is formed, among which it is possible to isolate six conical lacunas with the
bases, perpendicular to the coordinate axes.

Figure 2 represents wave surfaces for the elastic piezoactive waves, which are
extended in the gallium arsenide. The properties of the material are described by
the following constants: A11 = 118.8, A12 = 53.8 and A44 = 59.4 HPa, e14 = −0.16
Cl/m2, ε11 = 0.973 pF/m [1].

As it follows from figure 2, the propagation of quasi-transverse waves in the
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Figure 3: Three-dimensional fronts of the elastic piezoactive waves, stretching in the
lithium columbate: 1 - a quasilongitudinal wave: 2 - a quasitransversal wave with
the speed of v2; 3 - a quasitransversal wave, having the speed v3.

galena occurs with appearance of twelve (wave, which is extended with the speed
v2) and eight (wave, which is extended with the speed v2) the lacunas.

Some of the widely used in practice piezoelectric materials are the crystals of
the trigonal system of symmetry, in particular lithium columbate and α - quartz,
that belong to the classes 3m and 32 accordingly. Figure 3 shows the wave fronts
of piezoactive waves, which are extended in lithium columbate. We assume during
the construction A11 = 203, A12 = 53, A13 = 75, A33 = 245, A44 = 60 and A14 = 9
HPa, e15 = 3.7, e22 = 2.5, e31 = 0.2, e33 = 1.3 Cl/m2, ε11 = 3.89, ε33 = 2.57 pF/m
[1].

The comparative analysis of the corresponding three-dimensional fronts of the
quasilongitudinal and quasitransversal waves, built taking into account and without
taking into account piezoelectric effect, shows that the interrelation of the electrical
and mechanical properties of lithium columbate substantially influences the geom-
etry of wave front. In particular, for lithium columbate it leads piezoelectric effect
to practically complete disappearance of lacunas at the fronts of quasitransversal
waves.

Three-dimensional wave fronts, which are extended from a point nonstationary
source in α - quartz, are represented in Fig. 4. The mechanical and electrical
properties of material are described by the follow-ing constants: A11 = 86.7, A12 = 7,
A13 = 11.9, A33 = 107.2, A44 = 57.9 and A14 = −17.9 HPa, e11 = 0.171, e14 = −0.04
Cl/m2, ε11 = 0.392, ε33 = 0.41 pF/m [1].

It is evident from figure 4 that the propagation of quasitransversal waves in α -
quartz occurs with the appearance of the complex system of lacunas. In particular,
at the wave front of quasitransversal wave, that has phase speed equal v2 ,there
appear two conical lacunas, axis of which is the coordinate axis x3, four lacunas of
the symmetrically located relative to three axes coordinates, and also two lacunas
of symmetrical relative to beginning coordinates. Lacunas, which appear at the
front of the quasitransversal wave, which is extended with the phase speed v3, take
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Figure 4: Three-dimensional fronts of the elastic piezoactive waves, stretching in the
α - quartz: 1 - a quasilongitudinal wave: 2 - a quasitransversal wave with the speed
of v2; 3 - a quasitransversal wave, having the speed v3.

the form of strips. Let us note that the geometric form of lacunas at the fronts of
quasitransversal waves differs significantly from the conical lacunas, which have one
branch point of the lines of wave front.

4 Conclusion.

The obtained results can be used for conducting of full-scale experiments regarding
different physical and mechanical constants and correct interpretation of experi-
mental data. The information about the special features of the propagation of
wave fronts can be used for designing the piezoelectric structures with the assigned
properties of acoustic waves, devices of working signal and different sensors. The
paperwork has been performed with the financial support of the Belorussian republic
fund for basic research (project F08M - 087).
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