ЛИТЕРАТУРА

- X. Zhang, W.C. Tang, Viscous air damping in laterally driven microresonators, IEEE Workshop on Micro Electro Mechanical Systems, MEMS '94, 199-204 (1994);
- T. Klose, H. Conrad, T. Sandner, H. Schenk, Fluidmechanical damping analysis of resonant micromirrors with out-of-plane comb drive, Proc. COMSOL Conf., online, http://www.comsol.com/papers/5208 (2008).

ДИЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ КОНДЕНСАТОРНЫХ СТРУКТУР НА ОСНОВЕ ПЛЕНОК ТИТАНАТА СТРОНЦИЯ, СФОРМИРОВАННЫХ ЗОЛЬ-ГЕЛЬ МЕТОДОМ

Сохраби Анараки Х.¹, Н. В. Гапоненко¹, М. В. Руденко¹, С. М. Завадский¹, Д. А. Голосов¹, А. Ф. Гук¹, В. В. Колос², А. Н. Петлицкий², А. С. Турцевич²

^ТБелорусский государственный университет информатики и радиоэлектроники, nik@nano.bsuir.edu.by, ²OAO «ИНТЕГРАЛ», Минск, Беларусь

введение

Технологии получения сегнетоэлектрических оксидов BaTiO₃ и SrTiO₃ со структурой перовскита активно развиваются для формирования пироэлектрических детекторов, электрооптических модуляторов, тонкопленочных конденсаторов и других устройств электронной техники [1-3].

В данной работе определены значения диэлектрической проницаемости (ε) и тангенса угла диэлектрических потерь (tgδ) тонкопленочных конденсаторов на основе пленок титаната стронция, полученных золь-гель методом (ксерогелей), сформированных на структуре кремний/титан/платина.

МЕТОДИКА ЭКСПЕРИМЕНТА

Исхолными компонентами золей являлись ацетат гидрат стронция Sr(CH₃COO)₂·1/2H₂O и тетраизопропоксид титана Ti(OCH(CH₃)₂)₄ [4]. Пленки наносились методом центрифугирования. Для изготовления конденсаторной структуры на подложке кремния формировались слои оксида титана и платины с последующей термообработкой в атмосфере кислорода при температуре не ниже 450 °C в течение 30 мин. Использовали несколько режимов термообработки. Для приготовления образца №1, содержащего пять слоев ксерогеля, сначала проводили сушку каждого нанесённого слоя. Образцы №2, 3, 4 прошли высокотемпературную обработку после сушки первого слоя, после чего наносились последующие слои с сушкой каждого слоя. Затем следовала заключительная термообработка образцов при температурах 750 – 800 °С. Для изготовления конденсаторной структуры формировались верхние электроды из никеля диаметром 300 мкм.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рисунке 1 представлены результаты анализа конденсаторных структур методом растровой электронной микроскопии (РЭМ). Изображения на рис. 1 (a, δ) приве-

84

дены для пленок, полученных из золей с концентрацией 40 мг/мл. Толщина титаната стронция составляет приблизительно 280 и 430 нм для пятислойной и восьмислойной пленки соответственно.

Рис. 1. РЭМ изображения пленок ксерогеля титаната стронция (образец №4)на структуре кремний/титан/платина после двухстадийной термообработки при температуре 750°С в течение 40 мин: (а) —пятислойная пленка ксерогеля; (б) —восьмислойная пленка ксерогеля

Существенно, что при толщине пленки титаната стронция меньше 200 нм и длительности отжига 30 мин при температуре 750 °С (образец №1) конденсаторная структура не формируется. Полученный результат может быть обусловлен как шунтированием структуры, так и изменением проводимости титаната стронция. Для образцов конденсаторных структур № 2-4 полученные значения диэлектрической проницаемости лежат в пределах 150 -190 и находятся в соответствии с известными ранее работами [2,3]. В таблице приведены также значения среднеквадратического отклонения указанных величин.

Таблица

N⁰	Емкость,	Диэлектри-	Средне-	Тангенс	Средне-	Объем	Толщи-
об-	πФ	ческая	квадратиче-	угла ди-	квадра-	BЫ-	на,
раз		проницае-	ское отклоне-	электри-	тическое	борки,	HM
ца		мость,	ние,	ческих	откло-	n	
		3	σ_{ϵ}	потерь,	нение,		
				tgδ	$\sigma_{tg\delta}$		
1	-	-	-	-	-	-	200
2	589	186	10,7	0,08	0,035	5	250
3	413	153	12,3	0,06	0,011	16	280
4	335	190	32,3	0,1	0,036	7	430

Характеристики конденсаторных структур для частоты 1 МГц.

85

На рисунке 2 представлена дифрактограмма пленки SrTiO₃, сформированной при температуре 750 °C в течение 40 мин (образец №4). Полученная дифрактограмма подтверждает наличие фазы титаната стронция.

Рис. 2. Дифрактограмма восьмислойной пленки SrTiO₃ на структуре кремний/титан/платина, (образец № 4) после окончательной термообработки при температуре 750°С

Таким образом, разработана лабораторная технология формирования многослойных пленочных конденсаторов на основе ксерогелей титаната стронция со значением диэлектрической проницаемости в пределах 150 – 190.ЛИТЕРАТУРА

- 1. *Fuentes S.* Preparation of SrTiO3 nanomaterial by a sol-gel hydrothermal method / S. Fuentes [et al.] // J. Mater. Sci. 2010. Vol. 45. P. 1448-1452.
- 2. *Hofman W*. Dopant influence on dielectric losses, leakage behavior, and resistance degradation of SrTiO3 thin films / W. Hofman, S. Hoffmann, R. Waster // Thin Solid Films 1997 Vol. 305 P. 66–73.
- 3. *Pontes F. M.* Preparation, microstructural and electrical characterization of SrTiO3 thin films prepared by chemical route / F. M. Pontes [et al.]// J. Mater. Sci. 2000.Vol. 35. P. 4783 – 4787.
- Сохраби Анараки Х. Синтез пленок титаната стронция золь-гель методом и перспективы их применения в электронной технике /Х. Сохраби Анараки [и др.] // Физика и техника полупроводников, 2014, том 48, вып. 12. С. 140-142.

