PROPERTIES OF ROTATIONAL BANDS OF ISOTOPES Yb

Okhunov A.A.^{1,4}, Usmanov Ph.N.^{2,4}, Torla HJ Hassan¹, Hasan Abu Kassim³

¹International Islamic University of Malaysia, Kuala Lumpur, Malaysia; ²Namangan

Engineering—Technology Institute, Uzbekistan; ³Quantum Science Centre, Department of

Physics, University of Malaya, Kuala Lumpur, Malaysia; ⁴Institute of Nuclear Physics,

Academy of Science of Republic Uzbekistan, Tashkent, Uzbekistan

E-mail: aaokhunov@gmail.com

Present paper focuses on low-lying states of positive parity of isotopes 170,172,174 Yb. The calculation is conducted by utilizing a phenomenological model [1] which accounts Coriolis mixture all of the experimentally known low-lying rotational bands states with $K^{\pi} < 3^{+}$. Experimentally observed K-forbidden transitions as well as non-adiabaticities of energy and in ratios of E2- transitions can be explained by Coriolis mixture states.

The calculations have been carried out for the 170,172,174 Yb isotopes. All experimentally known rotational bands of positive parity with $K^{\pi} < 3^{+}$ have been included in basis states of Hamiltonian.

The reduced probability of E2-transitions and reduced probability of M1- transitions from the states I_iK_i to the level I_fK_f band are calculated. The reduced probabilities of E2 – transitions for ¹⁷²Yb are presented in Tables 1.

The experiment suggests that m=5 band with $K^{\pi}=0_m^+$, one band $\ell=1$ with $K^{\pi}=2_{\ell}^+$, and $\nu=19$ with $K^{\pi}=1_{\nu}^+$ states in ^{170}Yb [2]. These all $n=m+\ell+\nu=25$ rotational bands have been included in the basis states of Hamiltonian (1). For the isotopes $^{172,174}\text{Yb}$, basis states of Hamiltonian include $n=m+\ell+\nu=15$ (m=5, $\ell=2$ and $\nu=8$) and $n=m+\ell+\nu=22$ (m=5, $\ell=2$ and $\nu=15$), correspondingly [3,4,5].

The energy and structure of wave functions of excited states are calculated. The reduced probabilities of E2- and M1- transitions are also calculated and comprised with experimental data which are gives satisfactory result.

Table 1. Reduced probability of $E2$ – transitions in the 172 Yb					
$I_i K_i \rightarrow I_f 0_f$	Exp. [6]	Theory	$I_i K_i \rightarrow I_f 0_f$	Exp.[4]	Theory
$22_{1} \rightarrow 00_{1}$	74.6(57)	82	$20_{2} \rightarrow 00_{1}$	14(1)	13
→ 20 ₁	121 (12)	130	→ 20 ₁	45 (7)	23
→ 40 ₁	6.8 (7)	8.6	→ 40 ₁	142 (20)	74
$32_{\scriptscriptstyle 1} \rightarrow 20_{\scriptscriptstyle 1}$	152 (11)	154	$20_3 \rightarrow 00_1$	0.4(1)	3.6
→ 40 ₁	79 (6)	73	→ 20 ₁	0.6 (4)	3.0

- 1. P.N.Usmanov et al. // Physics of Particles and Nuclei Letters. 2010. V.7(3). P.185.
- 2. M.Baglin // Nucl. Data Sheets. 2002. V.96.
- 3. A.Zilges, P.VonBrentano et al. // Nucl. Phys. A. 1990. V.507.
- 4. B.Singh // Nucl. Data Sheets. 1995. V.75.
- 5. E.Browne, H.Junde // Nucl. Data Sheets, 1999, V.87, P.15.
- 6. C.W.Reich et al. // Nucl. Phys. A. 1974. V.228. P.365.