DETERMINATION OF THE PHONON AMPLITUDES EMPLOYED IN BOSON EXPANSION THEORIES

Efimov A.D.¹, Jolos R.V.², Mikhajlov V.M.³

¹Ioffe Physical Technical Institute, St.-Petersburg, Russia; ²Joint Institute for Nuclear Research, Dubna, Russia; ³Physical Institute of St.-Petersburg State University, Russia E-mail: efimov98@mail.ru

Low-lying states linked up by strong enough E2-transitions can be interpreted as superposition of many collective phonon configurations $(D^+)^{nd}$. In Boson Expansion Theories these phonons are mapped onto quadrupole boson operators, e.g. in [1] $D^+ o d^+ \sqrt{1 - \hat{n}_a / \Omega} \sim d^+ s$, \hat{n}_d is the number operator of dboson, Ω is their maximum number, s is a scalar auxiliary boson of the Interacting Boson Model. Wave functions in such approach are found as solutions of the boson Hamiltonian $(H_{\rm R})$. Theoretical calculations of $H_{\rm R}$ parameters begin with a choice of the D-phonon operator for which we use the form of the Ouasiparticle Random Phase Approximation $D_{\parallel}^+ \sim \sum (\psi_{12} a_1^+ a_2^+ + \varphi_{12} a_2 a_2^-)$ where amplitudes ψ , φ determine its two-quasiparticle composition. However, in contrast to QRPA where ψ, φ are defined for a onephonon state, we search them taking into account many phonon (boson) structure of the collective states. With this object we minimize over ψ and ϕ a functional Φ comprising the expectation value of $H_{\rm R}$ (parameters of which are functions of ψ , φ and effective quasiparticle interactions) and some additional conditions, details can be found in [2]. Thus, equations for ψ , φ involve the boson expectation values (BEV) such as $\langle n_a \rangle$, $\langle d^+ \cdot d^+ ss + \text{H.c.} \rangle$ and others, i.e. the equations allow for the many boson structure of states. One of the addition conditions in Φ fixes the value of $\xi = \sum_{i} \varphi^{2} / \sum_{i} \psi^{2}$ to be $\ll 1$, that gives the possibility, first, to employ the usual ORPA calculations and, secondly, to obtain the selfconsistent description of ψ, φ and BEV, i.e. the $H_{\rm B}$ parameters calculated with final values of ψ , φ give such BEV which being substituted into equations for ψ , φ lead to the same values of parameters. Such selfconsistency is impossible in the Tamm-Dankoff method, i.e., when $\phi = 0$. Calculations for Xe isotopes have shown that ξ cannot be larger than 0.065 and a reasonable agreement between calculations and all experimental data can be attained with $0.012 < \xi \le 0.050$. A part of these calculations for ¹²² Xe is given in the table (E in MeV, M \ni B, B(E2) in e^2 fm⁴).

	$E(2_1^+)$	$E(2_{2}^{+})$	$E(4_1^+)$	$B(E2:2_1^+ \rightarrow 0_1^+)$	$B(E2:4_1^+ \rightarrow 2_1^+)$
Exp.	0.331	0.843	0.828	2890 ⁺¹²⁵ ₋₁₆₅	4150^{+190}_{-180}
$\xi = 0.0145$	0.330	0.838	0.882	2920	4360
$\xi = 0.02$	0.339	0.843	0.894	2860	4270
$\xi = 0.03$	0.329	0.858	0.866	2800	4210

^{1.} Р.В.Джолос, Ф.Дэнау, Д.Янссен // ТМФ. 1974. Т.20. С.112; F.Donau, D.Janssen, R.V.Jolos // Nucl. Phys. A. 1974. V.224. P.93.

^{2.} A.D.Efimov, V.M.Mikhajlov // Bull. RAS. Ser. Phys. 2011. V.75. P.890.