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Sbornik: Mathematics 189:8 1125–1137 c©1998 RAS(DoM) and LMS

Matematicheskĭı Sbornik 189:8 13–26 UDC 512.543.76

Decomposing one-relator products of cyclic

groups into free products with amalgamation

V.V. Benyash-Krivets

Abstract. The problem of the decomposition of one-relator products of cyclics
into non-trivial free products with amalgamation is considered. Two theorems are
proved, one of which is as follows.

Let G = 〈a, b | a2n = Rm(a, b) = 1〉, where n > 0, m > 2, and R(a, b) is a cyclically
reduced word containing b in the free group on a and b. Then G is a non-trivial free
product with amalgamation.

One consequence of this theorem is a proof of the conjecture of Fine, Levin, and
Rosenberger that each two-generator one-relator group with torsion is a non-trivial
free product with amalgamation.

Bibliography: 13 titles.

Introduction

A one-relator free product of a family of groups {Gi}, i ∈ I, is the group
G = (∗Gi)/N(S), where S is a cyclically reduced word in the free product ∗Gi
and N(S) is its normal closure. We call S a relator. One-relator free products
share many properties with one-relator groups [1]. We consider the case when the
Gi are cyclic groups and the relator is a proper power, that is, S = Rm, where R
is a cyclically reduced word in ∗Gi and m > 2.

Definition 1. A group G having a presentation

G = 〈a1, . . . , an | al11 = · · · = alnn = Rm(a1, . . . , an) = 1〉,

where n > 2, m > 2, li = 0 or li > 2 for all i, and R(a1, . . . , an) is a cyclically
reduced word in the free group on a1, . . . , an, is called a one-relator product of n
cyclics .

This paper considers the problem of the decomposition of one-relator products of
cyclics into non-trivial free products with amalgamation. The first general results
on the decomposition of such groups were obtained in [2]. Theorem 3 in [2] says
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that if G is a free one-relator product of n cyclics (n > 3), then G is a non-trivial
free product with amalgamation.

The case of free one-relator products of 2 cyclics, that is, of groups

G = 〈a, b | am = bn = Rl(a, b) = 1〉,

where l > 2 and R(a, b) is a cyclically reduced word in the free group on a and b, is
considerably more complicated. Such groups are called generalized triangle groups.
Sometimes these groups admit a decomposition into a non-trivial free product with
amalgamation and sometimes they do not. For example, it is known (cf. [3]) that
the ordinary triangle groups

T (m,n, p) = 〈a, b | am = bn = (ab)p = 1〉,

where m,n, p > 2, are non-trivial free products with amalgamation. Zieschang [3]
has studied the problem of the decomposition into a non-trivial free product with
amalgamation for planar discontinuous groups. He has given a complete answer to
the question when such a group G is a non-trivial free product with amalgamation
in all cases except for the groups

H1 = 〈a, b | [a, b]n = 1〉 and H2 = 〈c, d | c2 = [c, d]n = 1〉, n > 2.

Rosenberger [4] has proved that the groups H1 and H2 are non-trivial free products
with amalgamation if n is not a power of 2. In recent papers [5] and [6] this property
was established for arbitrary n. This result is also an immediate consequence of
Theorem 1. The following conjecture was stated in [2].

Conjecture 1. A two-generator one-relator group with torsion is a non-trivial free
product with amalgamation.

Note that if a group G has more that 2 generators, then the assertion of Conjec-
ture 1 holds by Theorem 3 in [2] mentioned above. Moreover, this conjecture has
been proved in [2] for groups G having a presentation G = 〈a, b | Rm(a, b) = 1〉,
where m > 2 and R(a, b) is a cyclically reduced word not belonging to the derived
subgroup of the free group on a and b.

In the present paper we prove the following two results.

Theorem 1. Let G = 〈a, b | a2n = Rm(a, b) = 1〉, where n > 0, m > 2, and R(a, b)
is a cyclically reduced word containing b in the free group on a and b. Then G is a
non-trivial free product with amalgamation.

Theorem 2. Let G = 〈a, b | an = Rm(a, b) = 1〉, where n = 0 or n > 2, m > 3,
and R(a, b) is a cyclically reduced word containing b in the free group on a and b.
If R(a, b) = au1bv1 · · · ausbvs , where 0 < ui < n, vi 6= 0 for i = 1, . . . , s, and∏s
i=1 |vi| > 3, then G is a non-trivial free product with amalgamation.
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Corollary 1. Let G be a two-generator one-relator group with torsion. Then G is
a non-trivial free product with amalgamation.

Proof of Corollary 1. It is well known (see, for example, [7]) that if G is a finitely
generated one-relator group with torsion then G has a presentation of the form
G = 〈a1, . . . , an | Rm(a1, . . . , an) = 1〉, where m > 2 and R(a1, . . . , an) is
a cyclically reduced word in the free group on a1, . . . , an. In our case G =
〈a, b | Rm(a, b) = 1〉, so that G is a non-trivial free product with amalgamation
by Theorem 1.

Corollary 2. The groups H1 = 〈a, b | [a, b]n = 1〉 and H2 = 〈c, d | c2 = [c, d]n = 1〉
are non-trivial free products with amalgamation for each n > 2.

§ 1. Some auxiliary results

Here we shall prove several auxiliary results. Throughout we shall denote the
identity matrix in SL2(C) by E, the ring of algebraic integers in C by O, the free
group of rank 2 with generators g and h by F2 = 〈g, h〉, and the trace of a matrix X
by trX. The following result of Bass [8] plays a key role in the proof of Theorems 1
and 2.

Proposition 1 (see [8]). Let H be a finitely generated subgroup of GL2(C). Then
one of the following cases must occur :

(1) there exists an epimorphism f : H → Z such that f(u) = 0 for all unipotent
elements u ∈ H;

(2) H is conjugate to a subgroup of the group of triangular matrices

(
a b
0 c

)
with roots of unity a and c ;

(3) H is conjugate to a subgroup of the group GL2(O);
(4) H is a non-trivial free product with amalgamation.

The following observation is useful in the construction of matrices of finite order
in SL2(C).

Lemma 1. Let m > 1 and let X ∈ SL2(C). If trX = ±2 cos(rπ/m), where
r ∈ {1, . . . ,m− 1}, then X2m = E. In particular, if trX = 0, then X2 = −E.

Proof. Let, for example, trX = 2 cos(rπ/m). Then the characteristic polynomial of
X has the roots α = cos(rπ/m)+ i sin(rπ/m) and α−1 = cos(rπ/m)− i sin(rπ/m),
where α is some 2mth root of unity. Consequently, X is conjugate to the matrix
X1 = diag(α, α−1) and therefore X2m = E.

In what follows we shall require so-called ‘Fricke characters’ (see [9]–[11]). For
each w = w(g, h) ∈ F2 one can consider the following regular function:

τw : SL2(C)× SL2(C)→ C, τw(A,B) = tr(w(A,B)).

It has been proved in [9] (see also [12]) that for each w ∈ F2 we have

τw = Qw(τg, τh, τgh),



1128 V.V. Benyash-Krivets

where Qw ∈ Z[x, y, z] is a polynomial with integral coefficients. The function τw
is called a Fricke character and the polynomial Qw is the Fricke polynomial of the
element w ∈ F2. Let u and v be arbitrary elements of F2. The following relations
for Fricke characters follow from the corresponding relations between the traces of
arbitrary matrices in SL2(C) and can be readily verified:

(1) τu−1 = τu; (2) τuv = τvu; (3) τvuv−1 = τu; (4) τuv = τuτv − τuv−1 . (1)

The following assertion is well known and can be easily proved by straightforward
computations, although it is difficult to give an explicit reference.

Lemma 2. For all α, β, γ ∈ C there exist matrices A,B ∈ SL2(C) such that

τg(A,B) = trA = α, τh(A,B) = trB = β, and τgh(A,B) = trAB = γ.

In particular, this lemma means that the Fricke characters τg, τh, and τgh are
algebraically independent over C, and therefore the Fricke polynomial Qw of an
element w is well defined. Next, we require an explicit formula for the Fricke
polynomial obtained in [13]. To formulate this result we consider polynomials
Pn(λ) satisfying the recurrence relations

Pn(λ) = λPn−1(λ)− Pn−2(λ)

and the initial conditions

P0(λ) = 1, P−1(λ) = 0.

If n < 0, then we set
Pn(λ) = −P|n|−2(λ)

The degree of the polynomial Pn(λ) is equal to n if n > 0 and to |n| − 2 if n < 0.

Lemma 3. (1) The polynomial Pn(λ), n > 1, has n zeros, described by the formula

λn,k = 2 cos
kπ

n+ 1
, k = 1, 2, . . . , n.

(2) Pn−1(2) = n for each n ∈ Z.
(3) Let x = τg, let y = τh, and let z = τgh. Then

Qghn(x, y, z) = Pn−1(y)z − Pn−2(y)x. (2)

Proof. (1) It is easy to verify by induction on n that

Pn(2 cosϕ) =
sin(n+ 1)ϕ

sinϕ
.

Assertion (1) can now be obtained by a straightforward computation.
Assertions (2) and (3) can be proved by induction on n (as regards (2), see

also [12], formula (6)).

Further, let w = gα1hβ1 · · · gαshβs ∈ F2 be a cyclically reduced word in F2, and
let x = τg, y = τh, and z = τgh. We treat the Fricke polynomial Qw(x, y, z) as a
polynomial in z. Let

Qw(x, y, z) = Mn(x, y)z
n +Mn−1(x, y)z

n−1 + · · ·+M0(x, y).
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Proposition 2 (see [13]). The degree of the Fricke polynomial Qw(x, y, z) with
respect to z is equal to s, that is, the number of blocks of the form gαihβi in w. The
leading coefficient Ms(x, y) of the polynomial Qw(x, y, z) has the following form:

Ms(x, y) =
s∏
i=1

Pαi−1(x)Pβi−1(y).

The following lemma plays an important role in the proof of Theorems 1 and 2.

Lemma 4. Let G = 〈a, b | an = Rm(a, b) = 1〉 and let A,B ∈ SL2(C) be matrices
such that trA = α, where α = ±2 cos(tπ/n) for some t ∈ {1, . . . , n − 1}, and
QR(α, y, z) = c, where QR is the Fricke polynomial of the element R(g, h) ∈ F2,
c = ±2 cos(rπ/m) for some r ∈ {1, . . . ,m − 1}, y = trB, and z = trAB. Let
H = 〈A,B〉. Assume that two following conditions are satisfied :

(1) there exists a unipotent (or finite-order) element u = Aα1Bβ1 · · ·AαsBβs
in H such that l =

∑s
i=1 βi 6= 0;

(2) there exists an element h ∈ H such that tr h /∈ O.

Then the group G is a non-trivial free product with amalgamation.

Proof. We claim that the group H fails conditions (1)–(3) of Proposition 1. Let
f : H → Z be an epimorphism such that f(z) = 0 for all unipotent elements z ∈ H.
Then f(A) = 0 because A2n = E by Lemma 1. Further, f(u) = lf(B) = 0,
therefore f(B) = 0 because, by assumption, u is either unipotent or of finite order.
Hence f(H) = {0}, which is a contradiction. Next, there exists by assumption
an element h ∈ H such that trh /∈ O. Hence H does not satisfy conditions (2)
and (3) of Proposition 1 and H is a non-trivial free product with amalgamation,
that is, H = H1 ∗F H2 with H1 6= F 6= H2. Since −E ∈ Z(H), it follows that
−E ∈ F . Let A, B, H, H1, H2, and F be the images of A, B, H, H1, H2, and F in
PSL2(C), respectively. Then H1 6= F 6= H2, and therefore H = H1 ∗F H2 is a non-
trivial free product with amalgamation. The condition QR(α, y, z) = c means that

trR(A,B) = c, so that R2m(A,B) = E by Lemma 1. Thus, A
n

= Rm(A,B) = 1
in PSL2(C), so that H is an epimorphic image of G and we obtain the assertion of
Lemma 4. (It is well known that if ϕ : Γ1 → Γ2 is an epimorphism of groups and
Γ2 is a non-trivial free product with amalgamation, then so also is Γ1.)

The following lemma will be repeatedly used in what follows.

Lemma 5. (1) For s,m,M ∈ Z satisfying the conditions m > 2 and |M | > 3 there
exist ε ∈ {−1, 1} and r ∈ {1, . . . ,m − 1} such that ((−1)s2 − c)/M /∈ O, where
c = 2ε cos(rπ/m).

(2) For m ∈ Z, m > 2, there exists an integer r ∈ {1, . . . ,m − 1} such that
(2 + 2 cos(rπ/m))−1 /∈ O.

(3) If m ∈ Z, m > 3, then cos(π/m) /∈ O.
(4) For all m,M ∈ Z, m > 3 and |M | > 3, there exists r ∈ {1, . . . ,m− 1} such

that (4/M) cos(rπ/m) /∈ O.

Proof. (1) Without loss of generality we can assume that s is even. Assume also
that for all ε ∈ {−1, 1} and r ∈ {1, . . . ,m − 1} the ratio (2 − c)/M is an alge-
braic integer. Then (2 − c)/M + (2 + c)/M = 4/M is an algebraic integer too.
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Since |M | > 3, this is possible only if |M | = 4. For definiteness, let M = 4. If m
is even, then we set r = m/2. In this case c = 0 and 2/M = 1

2 /∈ O which is a
contradiction. Assume that m is odd and F1 = {2 cos(2rπ/m) | r = 1, . . . ,m− 1}.
Then ∑

c∈F1

2− c
4

=
2(m− 1)−

∑
c∈F1

c

4
=

2(m− 1) + 1

4
,

because 1 +
∑
c∈F1

c = 0 as the sum of the mth roots of unity. Obviously,
(2(m − 1) + 1)/4 is not an algebraic integer; this is a contradiction proving asser-
tion (1).

(2) Since
1

2 + 2 cos(rπ/m)
=

1

4 cos2(rπ/(2m))
,

it is sufficient to prove that (2 cos(rπ/(2m)))−1 does not belong to O for some
r ∈ {1, . . . ,m− 1}. By virtue of Lemma 3 the polynomial P2m−1(λ) has zeros at 0
and ±2 cos(rπ/(2m)), r = 1, . . . ,m− 1. It is easy to verify by induction on m that

P2m−1(λ) = λ
(
λ2m−2 + a1λ

2m−4 + · · ·+ (−1)m+1m
)
. (3)

Hence the numbers (±2 cos(rπ/(2m)))−1 are the zeros of P2m−1(1/λ) or, equiva-
lently, of the polynomial

g1(λ) = λ2m−2 + · · ·+ (−1)m+1 1

m
.

Since 1/m /∈ O, at least one of the zeros of g1(λ) is not an algebraic integer and (2)
is proved.

(3) It is sufficient to prove that there exists r ∈ {1, . . . ,m − 1} such that
cos(rπ/m) /∈ O because if cos(π/m) ∈ O, then cos(rπ/m) ∈ O for each r ∈ Z.
By Lemma 3 the numbers 2 cos(rπ/m), r = 1, . . . ,m− 1, are the zeros of the poly-
nomial Pm−1(λ). Ifm = 2k, then it follows from (3) that the numbers cos(rπ/(2k)),
r = 1, . . . , 2k−1, are the zeros of g1(2λ) or, equivalently, the roots of the polynomial
equation

λ2k−1 + · · ·+ (−1)k−1 k

22k−2
λ = 0.

Since k > 2, it follows that k < 22k−2, so that k/22k−2 is not an algebraic integer.
Hence there exists r such that cos(rπ/(2k)) /∈ O.

Let m = 2k + 1. Then it is easy to verify by induction that

P2k(λ) = λ2k + · · ·+ (−1)k. (4)

By Lemma 3 the numbers cos(rπ/(2k+ 1)), r = 1, . . . , 2k, are the zeros of P2k(2λ)
or, equivalently, the roots of the equation

λ2k + · · ·+ (−1)k

22k
= 0.

Since (−1)k/22k /∈ O, there exists r such that cos(rπ/(2k + 1)) /∈ O.
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(4) It follows from Lemma 3 that the numbers (4/M) cos(rπ/m), r = 1, . . . ,m−1,
are the zeros of Pm−1(Mλ/2). We consider now two cases.

Let m = 2k + 1. Then the numbers (4/M) cos(rπ/(2k + 1)), r = 1, . . . , 2k, are
by (4) the roots of the equation

λ2k + · · ·+ (−1)k
( 2

M

)2k

= 0.

Since |M | > 3, it follows that (−1)k(2/M)2k /∈ O, and therefore the last equation
also has a root not belonging to O.

Let m = 2k. Then the numbers (4/M) cos(rπ/m), r = 1, . . . ,m − 1, are by (3)
the roots of the equation

λ2k−1 + · · ·+ (−1)k+1k
( 2

M

)2k−2

λ = 0.

It is easy to see that (−1)k+1k(2/M)2k−2 /∈ O. This proves assertion (4) and, at
the same time, Lemma 5.

§ 2. Proof of Theorem 1

Let G be a group satisfying the assumptions of Theorem 1. If n = 0 or n > 1,
then we consider the group G1 = 〈a, b | a2 = Rm(a, b) = 1〉, which is an epimorphic
image of G. Thus, we can assume without loss of generality that n = 1. Our
aim is to construct a representation ϕ : G → PSL2(C) such that the group ϕ(G)
is a non-trivial free product with amalgamation. Three cases can occur; we shall
consider them separately:

(1) R(a, b) = abn1 · · · abns is a cyclically reduced word lying in the subgroup
of the free group on a and b generated by a2 and the derived subgroup;
moreover, there exists i such that |ni| > 1;

(2) R(a, b) is as in case 1, but |ni| = 1 for all i = 1, . . . , s;
(3) R(a, b) is a cyclically reduced word that does not belong to the subgroup of

the free group on a and b generated by a2 and the derived subgroup.

Case 1. Let R(a, b) = abn1 · · · abns . It follows from our assumptions about the
element R(a, b) that s is even and

∑s
i=1 ni = 0. To apply Lemma 4 we shall show

that there exist matrices A,B ∈ SL2(C) such that

trA = 0, trB = 2, and trAB = z,

where z is a complex number not belonging to O and satisfying the equation

QR(0, 2, z) = c, (5)

where c = ±2 cos(rπ/m) for some r ∈ {1, . . . ,m− 1}.
By Proposition 2 we can write (5) as follows:

Ms(0, 2)zs +Ms−1(0, 2)zs−1 + · · ·+M0(0, 2)− c = 0, (6)

where Ms(0, 2) =
∏s
i=1 P0(0)Pni−1(2) =

∏s
i=1 ni by Lemma 3. Since s is even,∑s

i=1 ni = 0 and there exists i such that |ni| > 1, it follows that
∏s
i=1 |ni| > 3.

Thus, |Ms(0, 2)| > 3. Furthermore, we have the following result.



1132 V.V. Benyash-Krivets

Lemma 6. Let QR(x, y, z) = Ms(x, y)z
s + · · ·+M0(x, y) be the Fricke polynomial

of R = ghn1 · · · ghns ∈ F2, where s is even, x = τg, y = τh, and z = τgh. Then

M0(0, 2) = (−1)s/22.

Proof. First, we make the following observations.
(1) Qhi(0, 2, z) = 2, for if A,B ∈ SL2(C) and B is a unipotent matrix, then Bi

is unipotent for any i. Hence τhi(A,B) = trBi = 2.
(2) It follows from Lemma 3 that Qghi(0, 2, z) = Pi−1(2)z = iz.
We shall prove the lemma by induction on s. If s = 2, then, using relations (1),

we obtain

Qghn1ghn2 (0, 2, z) = Qghn1 (0, 2, z)Qghn2 (0, 2, z)−Qhn2−n1 (0, 2, z) = n1n2z
2 − 2,

that is, M0(0, 2) = −2. For arbitrary s > 2 we have

QR(0, 2, z) = Qghn1 (0, 2, z)Qghn2···ghns (0, 2, z)

−Qghn3 ···ghns−n1+n2 (0, 2, z) = n1zf(z)− g(z),

where

f(z) = Qghn2 ···ghns (0, 2, z),

g(z) = Qghn3 ···ghns−n1+n2 (0, 2, z).

We see that the polynomial QR(0, 2, z) has the same constant term as g(z) and, by
induction,

M0(0, 2) = −(−1)(s−2)/22 = (−1)s/22.

This proves Lemma 6.

Bearing in mind Lemma 6 we can write (6) in the following form:

zs +
Ms−1(0, 2)

Ms(0, 2)
zs−1 + · · ·+ (−1)s/22− c

Ms(0, 2)
= 0. (7)

It follows from Lemma 5(1) that one can choose c = ±2 cos(rπ/m) in the equa-
tion (7) such that the constant term ((−1)s/2 − c)/Ms(0, 2) does not belong to O.
Then (7) has a root z0 that is not an algebraic integer. By Lemma 2 there exist
matrices A,B ∈ SL2(C) such that

trA = 0, trB = 2, trAB = z0.

Lemma 4 completes the proof of Theorem 1 in the first case.

Case 2. Let R(a, b) = abε1abε2 · · · abεs . It follows from our assumptions that s is
even, εi ∈ {−1, 1} for i = 1, . . . , s, and

∑s
i=1 εi = 0.

Assume for the moment that εj = εj+1 for some j < s. Let c = a and d = abεj

be new generators of the group G. Then it is not hard to verify that G has a
presentation of the following form:

G = 〈c, d | c2 = Rm1 (c, d) = 1〉,
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where R1(c, d) = cdl1 · · · cdlt is a cyclically reduced word lying in the subgroup of
the free group on c and d generated by c2 and the derived subgroup and there exists
li such that |li| > 2. This case has just been considered above.

Thus, let R(a, b) = abab−1 · · ·abab−1 = (abab−1)l for some l > 0. Then the
group G has a presentation of the following form:

G = 〈a, b | a2 = (abab−1)t = 1〉,

where t > 2. We claim that there exist matrices A,B ∈ SL2(C) satisfying the
conditions

(1) trA = 0; (2) trAB−2AB3 = 2; (3) trAB /∈ O; (4) trABAB−1 = c;

where c = ±2 cos(rπ/m) for some r ∈ {1, . . . ,m− 1}. Using Fricke characters one
can write conditions (2) and (4) as the system{

τghgh−1(A,B) = c,

τgh−2gh3(A,B) = 2.
(8)

Using relations (1) for Fricke characters it is easy to obtain

τghgh−1 = −τ2
gh + τgτhτgh − τ2

h + 2

and

τgh−2gh3 = (τgτ
2
h − τhτgh − τg)(τ2

hτgh − τgτh − τgh)− τ5
h + 5τ3

h − 5τh.

We set y = τh(A,B) = trB and z = τgh(A,B) = trAB. Since τg(A,B) = trA = 0,
it follows that

τghgh−1(A,B) = −z2− y2 + 2, τgh−2gh3(A,B) = −(y3− y)z2− (y5− 5y3 + 5y).

Thus, one can write (8) in the following form:{
z2 + y2 − 2 + c = 0,

(y3 − y)z2 + y5 − 5y3 + 5y + 2 = 0.
(9)

It follows by (9) that

y3 −
(
1 +

1

c+ 2

)
y − 2

c+ 2
= 0. (10)

By Lemma 5(2) there exists r ∈ {1, . . . ,m− 1} such that 1/(c+ 2) does not belong
to O. In this case equation (10) has a root y0 /∈ O. Let (y0, z0) be some solution
of (9). By Lemma 2 there exist matrices A,B ∈ SL2(C) such that

trA = 0, trB = y0, and trAB = z0.

Lemma 4 completes the proof of Theorem 2 in the second case.
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Case 3. Let R(a, b) = abn1 · · · abns and assume that R(a, b) does not belong to
the subgroup of the free group on a and b generated by a2 and the derived subgroup.
The case

∑s
i=1 ni 6= 0 has been considered in [2], Theorem 5. Hence we can assume

that s is odd and
∑s
i=1 ni = 0.

First, we consider the case m = 2. Let G1 = 〈a, b | a2 = b2 = R2(a, b) = 1〉.
We claim that G1 = 〈a, b | a2 = b2 = 1〉 is the free product of two cyclic groups of
order two. It is sufficient to prove that R2(a, b) = 1 in G. We shall prove a more
general fact: if w(a, b) = abl1 · · · abls , where s = 2k + 1 and

∑s
i=1 ls is even, then

w2(a, b) = 1 in G1. We use induction on s. For s = 1 the claim is obvious. For
arbitrary s there exists an even number among the exponents l1, . . . , ls. Assume,
for example, that l1 is even. Then bl1 = 1 in G1 and

w(a, b) = bl2abl3 · · · abls ,

that is, w(a, b) is conjugate to

w1(a, b) = abl3 · · ·abl2+ls .

Since the sum l3 + · · · + (l2 + ls) is even as before, we can use induction and
obtain that w2

1(a, b) = 1 in G1. Hence w2(a, b) = 1 in G1. Since the group G1

is an epimorphic image of G, it follows that G is a non-trivial free product with
amalgamation.

Next, we consider the case of m > 3. We claim that there exist matrices A,B in
SL2(C) such that

trA = 0, trB = y0, trAB = 2, and QR(0, y0, 2) = 2 cos
π

m
,

where y0 is a complex number that is not an algebraic integer and QR(x, y, z) is
the Fricke polynomial of the word R(g, h) ∈ F2. We have the following result.

Lemma 7. (1) QR(0, y, z) = zf(y, z), where f(y, z) ∈ Z[y, z].
(2) The polynomial f1(y) = f(y, 2) is not constant.

Proof. (1) It follows from Lemma 3 that Qghn(0, y, z) = Pn−1(y)z, therefore the
assertion is proved for s = 1. Assume that s > 1. Then, using relations (1) one
obtains

τghn1 ···ghns = τghn1 τghn2 ···ghns − τghn3 ···ghns−n1+n2 ,

and by induction we have

QR(0, y, z) = Pn1−1(y)f1(y, z)z − zf2(y, z) = zf(y, z)

for some polynomial f(y, z) ∈ Z[y, z].
(2) Consider the Z-algebra T generated by all Fricke characters τw, w ∈ F2.

Each automorphism σ ∈ Aut(F2) induces an automorphism

σ′ : T → T, τw 7→ τσ(w).
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We consider an automorphism σ ∈ Aut(F2) such that

σ(g) = g, σ(h) = gh.

Then σ′ ∈ Aut(T ) is an automorphism such that

σ′(x) = x1 = x, σ′(y) = y1 = z, σ′(z) = z1 = xz − y.

Furthermore,
σ′(τR(g,h)) = τσ(R(g,h)) = τR(σ(g),σ(h)),

therefore
σ′(QR(x, y, z)) = QR(x1, y1, z1) = QR(x, z, xz − y).

Thus, σ′(QR(0, y, 2)) = QR(0, 2,−y). It follows from Proposition 2 that the poly-
nomial QR(0, 2,−y) ∈ Z[y] has degree s because its leading coefficient Ms satisfies
the inequality |Ms| =

∏s
i=1 |ni| 6= 0. Hence QR(0, 2,−y) is not constant, so that

σ′−1(QR(0, 2,−y)) = QR(0, y, 2) = 2f1(y) is not constant either, which completes
the proof.

We can now complete the proof of Theorem 1. By Lemma 7 the equality
QR(0, y0, 2) = 2 cos(π/m) is equivalent to the relation

f1(y0) = cos
π

m
. (11)

By Lemma 5(3), the number cos(π/m) is not an algebraic integer, therefore there
exists a root y0 of equation (11) that is not an algebraic integer either. By Lemma 2
there exist matrices A,B ∈ SL2(C) such that

trA = 0, trB = y0, and trAB = 2.

Using Lemma 4 we complete the proof of Theorem 1.

§ 3. Proof of Theorem 2

Bearing in mind Theorem 1 we can assume that n > 3. Let R(g, h) ∈ F2 and
let QR be the Fricke polynomial of the word R. We claim that there exist matrices
A,B ∈ SL2(C) such that

trA = α, trB = 2, and trAB = z,

where α = 2 cos(π/n), z is a complex number that is not an algebraic integer and
satisfies the equation

QR(α, 2, z) = c, (12)

where c = ±2 cos(rπ/m) for some r ∈ {1, . . . ,m − 1}. By Proposition 2 we can
rewrite (12) in the following form:

Ms(α, 2)zs +Ms−1(α, 2)zs−1 + · · ·+M0(α, 2)− c = 0, (13)
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where

Ms(α, 2) =
s∏
i=1

Pui−1(α)Pvi−1(2).

By Lemma 3, Pui−1(α) 6= 0 and Pvi−1(2) = vi, therefore Ms(α, 2) 6= 0. We
write (13) in the following form:

zs +
Ms−1(α, 2)

Ms(α, 2)
+ · · ·+ M0(α, 2)− c

Ms(α, 2)
= 0. (14)

We claim that we can choose c such that (M0(α, 2) − c)/Ms(α, 2) /∈ O. Assume
that both quantities

M0(α, 2) + 2 cos(rπ/m)

Ms(α, 2)
and

M0(α, 2)− 2 cos(rπ/m)

Ms(α, 2)

belong to O for each r ∈ {1, . . . ,m− 1}. Then, for their difference we have

4 cos(rπ/m)

Ms(α, 2)
∈ O.

Since Pr(λ) has integer coefficients for each r, it follows that Pui−1(α) belongs to O.
Hence

4 cos(rπ/m)

Ms(α, 2)
Pui−1(α) =

4 cos(rπ/m)

M
∈ O

for each r ∈ {1, . . . ,m− 1}, where M =
∏s
i=1 vi ∈ Z and |M | > 3 by the assump-

tions of the theorem. We obtain a contradiction with Lemma 5(4). This means that
there exists a root z0 of the equation (14) that does not belong to O. By Lemma 2
there exist matrices A,B ∈ SL2(C) such that

trA = α, trB = 2, and trAB = z0.

Using Lemma 4 we complete the proof of Theorem 2.

In conclusion, we state the following conjecture.

Conjecture 2. The group G = 〈a, b | an = Rm(a, b) = 1〉, where m > 2, n = 0 or
n > 2, and R(a, b) is a cyclically reduced word containing b in the free group on a
and b, is a non-trivial free product with amalgamation.

In view of Theorems 1, 2 and [2], Theorem 5, this conjecture has not yet been
proved in the following case: n is odd and R(a, b) = alR1(a, b), where 0 6 l < n and
R1(a, b) = au1bv1 · · ·ausbvs is a cyclically reduced word belonging to the derived
subgroup of the free group on a and b such that

∏s
i=1 |vi| ∈ {1, 2}.

This paper was written while the author was visiting the University of Bielefeld,
Germany as a guest of SFB 343 “Diskrete Strukturen in der Mathematik”.



Decomposing products of cyclic groups 1137

Bibliography

[1] J. Howie, “One-relator products of groups”, Groups (St. Andrews 1985), Cambridge Univ.
Press, Cambridge 1986, pp. 216–220.

[2] B. Fine, F. Levin, and G. Rosenberger, “Free subgroups and decompositions of one-relator
products of cyclics, Part 2: Normal torsion-free subgroups and FPA decompositions”,
J. Indian Math. Soc. 49 (1985), 237–247.

[3] H. Zieschang, “On decompositions of discontinuous groups of the plane”, Math. Z. 151
(1976), 165–188.

[4] G. Rosenberger, “Bemerkungen zu einer Arbeit von H. Zieschang”, Arch. Math. (Basel) 29
(1977), 623–627.

[5] D.D. Long, C. Maclachlan, and A. W. Reid, “Splitting groups of signature (1, n)”, J. Algebra
185 (1996), 329–341.

[6] M. J. Dunwoody and M. Sageev, “Splittings of certain Fuchsian groups”, Proc. Amer. Math.

Soc. 125 (1997), 1953–1954.
[7] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory. Presentation of groups

in terms of generators and relations, Interscience, New York 1974.
[8] H. Bass, “Finitely generated subgroups of GL2(C)2(C)”, The Smith Conjecture, Wiley, New

York 1984, pp. 127–136.
[9] R. Horowitz, “Characters of free groups represented in the two-dimensional linear group”,

Comm. Pure Appl. Math. 25 (1972), 635–649.
[10] W. Magnus, “The uses of 2 by 2 matrices in combinatorial group theory”, Results Math. 4:2

(1981), 171–192.
[11] M. Culler and P. Shalen, “Varieties of group representations and splittings of 3 manifolds”,

Ann. of Math. (2) 117 (1983), 109–147.
[12] H. Helling, “Diskrete Untergruppen von SL2(R)”, Invent. Math. 17 (1972), 217–229.
[13] C. Traina, “Trace polynomial for two generated subgroups of SL2(C)”, Proc. Amer. Math.

Soc. 79 (1980), 369–372.

Institute of Mathematics
National Academy of Sciences of Belarus
Minsk

E-mail address: benyash@im.bas-net.by
Received 21/OCT/97

Translated by V. BENYASH-KRIVETS

Typeset by AMS-TEX


	䌀漀渀琀攀渀琀猀 

