NUCLEAR VERTEX CONSTANTS AND ASYMPTOTIC NORMALIZATION COEFFICIENTS OF ^{16}O BOUND AND RESONANT $\alpha + ^{12}C$ STATES FROM EFFECTIVE-RANGE AND PADÉ APPROXIMATIONS

Orlov Yu.V.¹, Irgaziev B.F.², Nikitina L.I.¹

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Russia;

GIK Institute of Engineering Science and Technology, Topi, Pakistan

E-mail: orlov@srd.sinp.msu.ru

The radiative capture reaction $^{12}\text{C}(\alpha,\gamma)^{16}\text{O}$ is a key nuclear process for the creation of oxygen in stellar nucleosynthesis. This defines the abundance ratio $^{12}\text{C}/^{16}\text{O}$ for helium burning in stars. To calculate the cross-section of this reaction one needs to know the asymptotic normalization coefficient (ANC) of the radial wave function for the ground ^{16}O state.

We calculate the renormalized Coulomb-nuclear constants for the vertex $^{16}\text{O}\leftrightarrow\alpha^{+}^{12}\text{C}$ and the ANC for the wave functions of the ground state ^{16}O ($J^{\pi}=0^{+}$) and for the two subthreshold bound states with a total angular momentum of $J^{\pi}=1^{-}$, 2^{+} . We use the analytical continuation method developed in [1]. We also apply this method to the resonances. In the states $J^{\pi}=0^{+}$, 1^{-} we use the effective-range function $K_{L}(E)$ (L is the orbital momentum, E is the α -particle energy) expanded up to E^{2} , and in the state $J^{\pi}=2^{+}$ we use the Padé-approximant for $K_{2}(E)$. In the energy region considered, the latter has two poles whose positions we find from the results of paper [2]. We expand the numerator N(E) of $K_{2}(E)$ up to E^{4} .

To fit the parameters of $K_L(E)$, we include in the input data not only the Coulomb-nuclear phase shifts, but also the ¹⁶O binding energies for the ground and excited states, and the energy and width of the resonances. We borrow the results of the phase shifts calculation from the R-matrix approach [2], which agree well with the experimental data [3]. The nucleus ¹⁶O has quite a rich spectrum. The one channel approximation in our approach means that the poles considered have to be reproduced just for the channel α +¹²C and must not contradict the α ¹²C scattering phase shifts energy behavior for a concrete state. So we ignore the α particle structure, which is reasonable for a low-energy region. The fitted sets of the $K_L(E)$ parameters well describe the phase shift results of the paper [2]. Every J^{π} state is treated separately. The energy dependence of the functions $K_L(E)$ with the orbital momenta L =0 and 1 are nearly linear, whereas the function $K_2(E)$ is much more complex. The preliminary results for the bound ground ¹⁶O state and resonant states with L =0 and 2 are presented in [4].

- 1. Yu.V.Orlov, B.F.Irgaziev, L.I.Nikitina // Yad. Fiz. 2010. V.73. P.787.
- 2. P.Tischhauser et al. // Phys. Rev. C. 2009. V.79. 055803.
- 3. R.Plaga et al. // Nucl. Phys. A. 1987. V.465. P.291.
- 4. L.I.Nikitina, Yu.V.Orlov // Proc. of 63 Intern. Conf. Moscow, 2013. P.148.