FORWARD-ANGLE VALUES OF POLARIZATION-TRANSFER (PT) COEFFICIENTS FOR THE ¹⁶O $(\vec{p}, \vec{p}')^{16}$ O (4⁻, T = 1) AND ²⁸Si $(\vec{p}, \vec{p}')^{28}$ Si (6⁻, T = 1) REACTIONS

Plavko A.V.¹, Onegin M.S.², Kudriashov V.I.³

¹St. Petersburg State Polytechnic University, Russia; ²Petersburg Nuclear Physics Institute, Gatchina, Russia; ³St. Petersburg State University, Russia E-mail: kudr@comita.spb.ru

Unnatural-parity transitions at extremely forward angles (at and near zero degrees) are characterized by the fact that the D_{NN} value should be practically equal to the D_{SS} value. This may be due to the circumstance that in this case the \hat{N} direction is basically identical to the \hat{S} direction [1] (owing to the symmetry around the scattering axis). Our calculations (Fig.) at $\theta_{c.m.} = 1^{\circ}$ with the program DWBA 91 from Raynal and with the Geramb *DD* forces (PH, solid curves) and the Nakayama–Love no*DD* interaction (NL, dashed curves) confirm this for the stretched isovector 4^- , T = 1 (18.98 MeV) transition in 16 O.

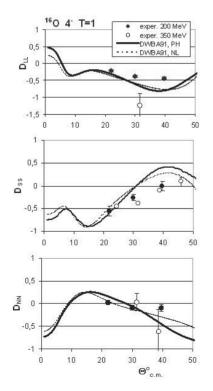


Fig. The calculations (curves) and experimental data (dots) are shown. The measurements at $E_p = 200 \text{ MeV}$ (dark dots) are taken from $[2] - D_{ll}$, D_{SS} , and from [3] - D_{NN} . The measurements at 350 MeV (open dots) are from [4]. The angles for 350 MeV have been multiplied by the coefficient $\kappa = (350 / 200)^{\frac{1}{2}} = 1.32$. All the calculations have made been at $E_n = 200 MeV.$

In the case of the PH force, $D_{NN} = -0.73$, and $D_{SS} = -0.74$. The quantity Σ , as a linear combination of the PT coefficient D_{ii} (called total spin transfer [1]), i.e. $\Sigma = [3 - (D_{NN} + D_{SS} + D_{LL})] / 4$, is equal to 1 for spinflip ($\Delta S = 1$) transitions and 0 for non-spin-flip ($\Delta S = 0$) transitions, if

This document has been edited with **Infix PDF Editor** - free for non-commercial use the spin-orbit interaction is negligible. This may occur in the (\vec{p}, \vec{p}') process at $\theta \approx 0^{\circ}$. In our calculations at $\theta = 1^{\circ}$, Σ was equal to 1.00 for both PH and NL forces. The relation

$$D_{NN}(0^{\circ}) = \pm \left[1 + D_{LL}(0^{\circ})\right] / 2 \tag{1}$$

is also well-known [1]. The plus sign in it refers to natural-parity, and the minus sign refers to unnatural-parity transitions. In our calculations at $\theta = 1^{\circ}$, this relation in a digital representation was as follows: $-0.730 \approx -0.734$ for PH force, and $-0.614 \approx -0.618$ for NL interaction.

Therefore, all the calculated combinations of the PT coefficients D_{ii} at and near zero degrees are in a good agreement with the corresponding theoretical relations [1]. Moreover, the calculations using DWBA 91 provide a satisfactory description of the experimental measurements D_{ii} (Fig.), obtained in the region of maximal differential cross sections.

We have also performed a similar study of the T = 1 stretched 6⁻ state at 14.35 MeV in ²⁸Si, using PT coefficients from (\vec{p}, \vec{p}') measurements at 200 MeV [3] and 500 MeV [5]. Our analysis, using the program DWBA 91 and PH forces, has revealed that D_{NN} (0°) = D_{SS} (0°) = -0.52. The quantity Σ appears to be practically equal to 1 (0.98), and equation (1) in a digital representation gives the following: -0.521 = -0.521.

The main qualitative features of the measured and calculated PT coefficients for the 6⁻, T = 1 excitation (not shown) and these of the corresponding data for the 4⁻, T = 1 excitation (Fig.) in the region of maximal differential cross sections are principally of a similar character. This is also an important guide.

Therefore, we have confirmed the suggestion [5, 6] that D_{SS} , D_{LL} and D_{NN} should resemble each other for all isovector stretched states, since the characteristics of D_{ii} depend primarily on the isovector stretched-state assumption and the sampled properties of the force. Thus, for pure stretched states of high spin, the qualitative shapes of D_{ii} should be approximately independent of the nucleus and are similar over a wide range of energies. Lastly, we would like to emphasize that, as D_{SS} , D_{LL} and D_{NN} are very insensitive to the type of distortion used [6] all these common characteristics should become most apparent for scattering at and near $\theta_{c.m.} = 0^{\circ}$ in the excitation of all the T = 1 stretched states.

- 1. H.Sakai et al. // Nucl. Phys. A. 1999. V.649. P.251.
- 2. A.D.Bacher et al. // Scient. and Techn. Rep., IUCF, USA.1984. P.5.
- 3. F.Sammarruca et al. // Phys. Rev. C. 1999. V.61. 014309.
- 4. B.Larson et al. // Phys. Rev. C. 1996. V.53. P.1774.
- 5. E.Donoghue et al. // Phys. Rev. C. 1991. V.43. P.213.
- 6. W.G.Love, A.J.Klein // J. Phys. Soc. Jpn. Suppl. 1986. V.55. P.78.

