YIELDS AND CROSS-SECTIONS OF THE (γ, n) AND (γ, p) REACTIONS ON THE TI ISOTOPES IN THE GDR REGION

Belyshev S.S. 1,2 , Dzhilavyan L.Z. 3 , Ishkhanov B.S. 1,2 , Kurilik A.S. 1,2 , Khankin V.V. 2 , Shvedunov V.I. 2

¹Faculty of Physics, Lomonosov Moscow State University, Russia; ²Scobeltsyn Institute of Nuclear Physics, Moscow State University, Russia.; ³ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia E-mail: belyshev@depni.sinp.msu.ru

Yields of the (γ, n) and (γ, p) reactions were measured on the stable Ti isotopes at the 55 MeV race-track microtron using registration of produced activities with a high-purity Ge γ -spectrometer (methodical details are similar to those in [1]). Results were analyzed together with available experimental data about yields and cross-sections for these reactions in the Giant Dipole Resonance (GDR) region from [2], taking into account gross-structure of the GDR, caused by nuclear deformation, isospin and cofigurational splitting [3].

For analysis of data there were also made calculations of cross sections for photonuclear reactions on the Ti isotopes using the nuclear reaction model [4].

Some results of data analysis for the integrated cross-sections of (γ, n) and (γ, p) reactions on even-even Ti isotopes are presented in the table. These results were obtained from experiments and model calculations and are presented in comparison with predictions of the dipole sum rule [5]. Incomplete exhaustion of the dipole sum rule is caused by the fact that the integrated cross sections from experiments and model calculations are for energies <~30 MeV. The fulfilled analysis shows that results of the present work permit to improve consistency of obtained earlier data.

Table. The model [4] and experimental integral (γ, n) and (γ, p) cross-sections on $^{46,48.50}$ Ti and the percents of the dipole sum rule for them. The upper indexes "*" are used for the model and experimental results obtained in this work

Ti	Experiments			Model calculations		
isotopes	$\sigma_{int}(\gamma,n),$	$\sigma_{int}(\gamma,p)$	$[\sigma_{int}(\gamma,n)+$	$\sigma_{int}(\gamma,n),$	$\sigma_{int}(\gamma,p)$,	$[\sigma_{int}(\gamma,n)+$
	MeV⋅mb	MeV⋅mb	$\sigma_{int}(\gamma,p)],$	MeV⋅mb	MeV⋅mb	$\sigma_{int}(\gamma,p)],$
			MeV⋅mb			MeV⋅mb
⁴⁶ Ti	194	333	527 (76%)	250*	270*	520 (75%)
⁴⁸ Ti	398	127*	525 (73%)	460*	100*	560 (78%)
⁵⁰ Ti	473	96	569 (77%)	480*	20*	500 (68%)

- 1. S.S.Belyshev et al. // Bull. Russ. Acad. Sci. Phys. 2013. V.77. No.4. P.480.
- 2. EXFOR http://cdfe.sinp.msu.ru/exfor/index.php
- 3. M.Danos, B.S.Ishkhanov et al. // Phys. Usp. 1995. V.38. P.1297.
- 4. TALYS-1.6. http://www.talvs.eu/
- 5. B.S.Ishkhanov, I.M.Kapitonov. Vzaimodeystvie elektromagnitnogo izlucheniya s atomnymi yadrami. M: Izdatel'stvo Moskovskogo universiteta,1979 (in Russian).