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1. Statement of the Cauchy problem. In a Hilbert space H with inner product (·, ·)
and norm | · |, on consider the Cauchy problem for operator-differential equation

du

dt
+ A(t)u = f, t ∈]0, T [, (1)

with the initial condition

u(0) = u0 ∈ H, (2)

where u and f are functions of t ranging in H, and A(t) are linear unbounded closed operators
in H with t-depending domains D(A(t)), t∈[0, T ].

One assume that the operators A(t) satisfy the following conditions.
I. The operators A(t) and their conjugates A∗(t) in H with t-depending domains D(A∗(t))

for all t∈ [0, T ] satisfy the inequalities

[u]2(t) ≡ Re(A(t)u + c0u, u) ≥ c1|u|2 ∀ u∈D(A(t)), (3)

〈v〉2(t) ≡ Re(A∗(t)v + c0v, v) ≥ c1|v|2 ∀ v∈D(A∗(t)), (4)

where c0≥0 and c1 > 0 are constants independent of u, v and t.
II. The inverses A−1

0 (t) of the operators A0(t) = A(t) + c0I in H are strongly continuous
with respect to t∈ [0, T ] in H, [2, p. 22] and for almost all t∈]0, T [ they have a weak derivative
dA−1

0 (t)/dt∈L∞(]0, T [, L(H)), with respect to t∈ [0, T ] in H [3, p. 172], such that

|((dA−1
0 (t)/dt)g, h)| ≤ c2[A

−1
0 (t)g](t)|h| ∀ g, h∈H, (5)

where c2≥0 is a constant independent of g, h and t.
First, we introduce needing spaces for the considered Cauchy problem. Let H∗−

t be the
antidual Hilbert spaces of the Hilbert spaces H∗+

t , which are obtained as the closure of the sets
D(A∗(t)) in the Hermitian norms 〈·〉(t), t∈ [0, T ], in (4). Throughout the sequel, all considered
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abstract functions and operator-valued functions of the variable t are supposed to be strongly
measurable in the Lebesgue measure dt on [0, T ] in H. We denote the Hilbert spaces H =
L2( ]0, T [, H) and H∗− = L2( ]0, T [, H∗−

t ).
Second, we define weak solutions of he considered Cauchy problem.
Definition 1. A function u∈H is called a weak solution of the Cauchy problem (1) – (2)

for right-hand sides f∈H∗− of the equation (1) and u0∈H of the initial condition (2), if

T∫
0

{
(u(t), A∗(t)ϕ(t))−

(
u(t),

dϕ(t)

dt

)}
dt =

T∫
0

〈
f(t), ϕ(t)

〉
(t)

dt + (u0, ϕ(0))

for all ϕ∈ Φ̃ ≡ {ϕ̃ ∈ H : ϕ̃(t)∈D(A∗(t)) ∀t∈[0, T ]; слабая производная dϕ̃/dt, A∗(t)ϕ̃∈H;
ϕ̃(T ) = 0}, where 〈·, ·〉(t) are the sesquilinear forms of antiduality between the Hilbert spaces
H∗+

t and H∗−
t .

Let us prove existence and uniqueness theorems for weak solutions of the Cauchy problem
(1) – (2) in the sense of Definition 1 below and of new mixed problems for odd-order partial
differential equations with time-dependent boundary conditions in general form. We first prove
existence theorem for weak solutions of this Cauchy problem.

Remark 1. If the operators A(t) satisfy Condition I, then for each t∈ [0, T ] the norms
[A−1

0 (t)g](t) = 〈A∗−1
0 (t)g〉(t) for all g ∈ H, where A∗−1

0 (t) are the inverse operators of A∗
0(t) =

A∗(t) + c0I.
2. Existence theorem. We formulate and prove the following existence theorem for weak

solutions.
Theorem 1. If Condition I is just, then for each f∈H∗− and u0∈H, there exists a weak

solution u∈H of the Cauchy problem (1) – (2).
Proof. The proof use the following projection Lions’ theorem in [1, p. 37].
Tеорема 2. Let F be a Hilbert space with Hermitian norm ‖·‖F and let Φ be a pre-Hilbert

space with Hermitian norm ||| · ||| and continuously embedded in F , i.e., there exists a constant
c3 > 0 such that

‖ϕ‖F ≤ c3|||ϕ||| ∀ ϕ∈Φ.

Let E(w, ϕ) be a given sesquilinear form on F×Φ continuous with respect to w on F for
each ϕ∈Φ, and suppose that there exists a constant c4 > 0 such that

|E(ϕ, ϕ)| ≥ c4|||ϕ|||2 ∀ ϕ∈Φ.

If the antilinear functional L(ϕ) is continuous with respect to ϕ on Φ, then there exists an
element w∈F such that E(w, ϕ) = L(ϕ) for all ϕ∈Φ.

On Hilbert space F = H and pre-Hilbert space Φ = Φ̃ with the norm

|||ϕ||| =
( T∫

0

〈
ϕ(t)

〉2
(t)

dt + |ϕ(0)|2
)1/2

,

we take respectively the following sesquilinear form and antilinear functional

E(w, ϕ) =

T∫
0

e2c0t
{

(w(t), A∗(t)ϕ(t))−
(
w(t),

dϕ(t)

dt

)}
dt,
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L(ϕ) =

T∫
0

〈
f(t), ϕ(t)

〉
(t)

dt + (u0, ϕ(0)).

For each ϕ∈ Φ̃, the form E(w, ϕ) is obviously continuous with respect to w on F = H
and, as integration by parts shows, |E(ϕ, ϕ)| ≥ ReE(ϕ, ϕ) ≥ (1/2)|||ϕ|||2 for all ϕ∈ Φ̃.
For any f ∈H∗− and u0 ∈H, the functional L(ϕ) is obviously continuous with respect to ϕ

on Φ̃. Thus, by force of Theorem 2 for each f ∈H∗− and u0 ∈H, there exists a solution w∈H
of the equation E(w, ϕ) = L(ϕ) ∀ϕ∈ Φ̃ and, therefore, a weak solution u = exp{2c0t}w∈H
of the Cauchy problem (1) – (2). The proof of this theorem is complete.

3. Uniqueness theorem. We formulate and prove the following uniqueness theorem for
weak solutions.

Theorem 3. If Conditions I–II are satisfied, then for each f∈H∗− and u0∈H the weak
solution u ∈ H of the Cauchy problem (1) – (2) is unique.

Proof. If u∈H is a weak solution of the Cauchy problem (1) – (2) for f = 0 and u0 = 0,
then we have the identity

T∫
0

{
(u(t), A∗(t)ϕ(t))−

(
u(t),

dϕ(t)

dt

)}
dt = 0 ∀ϕ∈Φ.

We may prove that the operators A∗−1
0 (t) have a weak derivative

dA∗−1
0 (t)/dt∈L∞(]0, T [, L(H)), with respect to t for almost all t∈]0, T [ in H. By

setting ϕ = A∗−1
0 (t)w, where w(t) = −

∫ T

t
e−2csu(s)ds or u = e2ct(dw/dt) and w(T ) = 0,

and by extracting the real part, we obtain the equality

Re

T∫
0

e2ct
{(dw

dt
, w
)
−
(dw

dt
, c0A

∗−1
0 (t)w +

dA∗−1
0 (t)

dt
w + A∗−1

0 (t)
dw

dt

)}
dt = 0.

After integration by parts in the first inner product, we trove the equality

1

2
|w(0)|2 + c

T∫
0

e2ct|w|2dt +

T∫
0

e2ct
〈
A∗−1

0 (t)
dw

dt

〉2

(t)
dt +

+ Re

T∫
0

e2ct
(dw

dt
, c0A

∗−1
0 (t)w +

dA∗−1
0 (t)

dt
w
)
dt = 0. (6)

By estimating from below the left-hand side of equality (6) by means of (3), (5) and by using
Remark 1, we have the inequality

c

T∫
0

e2ct|w|2dt +

T∫
0

e2ct
〈
A∗−1

0 (t)
dw

dt

〉2

(t)
dt − (c0c

−1/2
1 + c2)

T∫
0

e2ct
〈
A∗−1

0 (t)
dw

dt

〉
(t)
|w|dt ≤ 0,
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which, together with the well-known inequality, implies that(
c− (c0c

−1/2
1 + c2)

2

4

) T∫
0

e2ct|w|2dt ≤ 0.

Hence for c > (c0c
−1/2
1 + c2)

2/4, we obtain w = 0 and, therefore, u = 0 in H. The proof of the
theorem is complete.

Remark 2. Theorems 1 and 3 generalize Theorem 1.1 in [1, p. 129] for self-adjoint leading
parts A1(t) of the operator coefficient A(t) to the case of nonsymmetric operators A1(t)
of accretive operators A(t). Under Conditions I–II all weak solutions of the Cauchy problem
(1) – (2) satisfy the a priori estimate

T∫
0

|u(t)|2dt ≤ 4

c1

( T∫
0

〈
f(t)

〉2
(−t)

dt + |u0|2
)
,

where 〈·〉(−t) are the norms in the Hilbert spaces H∗−
t , t ∈ [0, T ], [1, Remark 1.2, p. 38].

4. Construction of the operators A(t). In a Hilbert space H we indicate one family
of operators A(t) with variable domains D(A(t)) satisfying Conditions I–II. Let sets
D(A(t)), t ∈ [0, T ], be closed subspaces of some Hilbert space V continuously embedded
in H. Let P (t), t∈[0, T ], be the orthogonal projections of the space V onto D(A(t)). We
assume the following conditions.

I1. The linear closed operators A(t) : H ⊃ D(A(t)) → H satisfy the inequality (3) and
their conjugates A∗(t) : H ⊃ D(A∗(t)) → H, t∈[0, T ], satisfy the inequality (4).

II1. The projection operators P (t) : V → V, t∈[0, T ], have the following properties.
(i) For each u∈V , the function P (t)u is strongly continuous with respect to t on [0, T ] in V

and

τ−1(P (t + τ)− P (t))u → P ′(t)u weakly in V as τ → 0

for almost all t.
(ii) For each g∈H, the functions u(t) = A−1

0 (t)g are strongly continuous with respect to t
on [0, T ] in V , and

τ−1P (t + τ)(u(t + τ)− u(t)) → P (t)u′(t) weakly in V as τ → 0

for almost all t.
(iii) The weak derivative u′(t) = P ′(t)u(t) + P (t)u′(t) taken in V satisfies the inequalities

|(u′(t), h)| ≤ c5[u(t)](t)|h| ∀ u(t)∈D(A(t)), ∀ h∈H (7)

for almost all t, where c5≥0 is a constant independent of u, h and t.
Теорема 4. The operators A(t) with properties I1 − II1 satisfy Conditions I − II

respectively.
Proof. It remains to justify inequality (5). If in the identities

τ−1(u(t + τ)− u(t)) = τ−1[P (t + τ)− P (t)]u(t) + τ−1P (t + τ)[u(t + τ)− u(t)]
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one passes to the weak limit in V as τ → 0, then, by using property II1 one obtains

((dA−1
0 (t)/dt)g, h) = (u′(t), h) = (P ′(t)u(t) + P (t)u′(t), h).

for almost all t and for arbitrary h∈H. The inequalities (7) are equivalent to the inequalities
(5). The proof of the theorem is complete.

Remark 3. Theorem 4 generalizes Theorem 5.1 in [1, p. 138] for self-adjoint leading parts
A1(t) of the operator coefficient A(t) to the case of nonsymmetric operators A1(t) of accretive
operators A(t). In the Theorem 5.1 the operators P (t) are projections not onto the domains
D(A(t)) as in Theorem 4 but actually onto the domains D(A

1/2
1 (t)) of the square roots A

1/2
1 (t).

Conditions I1−II1 generalize the corresponding Lions’ conditions. Unlike his conditions imposed
on the self-adjoint leading parts A1(t), which are given by sesquilinear Hermitian forms, our
conditions I1 − II1 are stated for operators A(t) themselves and in purely operator form.

5. Examples of domains D(A(t)). Let us give one example of domains D(A(t)) satisfying
property II1 in the Hilbert space H = L2(Ω), where Ω is a bounded domain with smooth
boundary S ∈ C∞ in the Euclidian space Rn of the real variables x = (x1, ..., xn).

By [1, Th. 3.2, p. 17], the values of the derivatives

γju = ∂ju/∂νj ∈ W
2m−j+1/2
2 (S), j = 0, 2m,

along the outward normal ν of S are defined on S for each function u in the Sobolev space
V = W 2m+1

2 (Ω). If all coefficients ai,j(t) belong to the set B([0, T ], L(W
2m−i+1/2
2 (S))), i ∈

J−m, j ∈ Jm, of functions bounded in the norm of linear continuous mappings in W
2m−i+1/2
2 (S)

for each t ∈ [0, T ], then the boundary conditions
Γj(t)u ≡ γju(x′)−

i<j∑
i∈J−m

ai,j(t)γiu(x′) = 0, x′∈S, j∈Jm,

Γj, k(t)u ≡ γju(x′)−
i<j∑

i∈J−m

ai,j(t)γiu(x′) = 0, x′∈S−
k ,

k = 1, n, j∈J−
m, t ∈ [0, T ], m = 0, 1, ...,

(8)

are well defined, where the sets of indices are

Jm = {js∈[0, ..., 2m] : s = 1, q},

J−
m = {js∈([0, ..., 2m]\Jm) : s = q + 1, m + 1},

J−m = [0, ..., 2m]\(Jm ∪ J−
m)

and S−
k – are the sets of all points x′ of the boundary S with negative direction cosines of the

angles between the outward normal ν to S and the axes Oxk, k = 1, n. We set

D(A(t)) = {u(t)∈W 2m+1
2 (Ω) : u(t)∈(8), Ã(t)u(t)∈L2(Ω)}, t ∈ [0, T ],

where Ã(t) =
∑

|α|≤2m+1

aα(t, x)Dα
x is a differential operator. Consider the operators

A(t) : L2(Ω) ⊃ D(A(t)) 3 u → Ã(t)u ∈ L2(Ω), t ∈ [0, T ].
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For each t∈[0, T ], the domains D(A(t)) are closed in the Sobolev space W 2m+1
2 (Ω). Let a

sequence up(t) ∈ D(A(t)) converge to u0(t) in the norm of space W 2m+1
2 (Ω) as p →∞. Then, by

Theorem 3.2 in [1, p. 17], the values of the boundary operators Γj(t)up(t) = 0 and Γj,k(t)up(t) =

0 converge respectively to the boundary operators Γj(t)u0(t) = 0 in W
2m−j+1/2
2 (S), j ∈ Jm,

and Γj,k(t)u0(t) = 0 in W
2m−j+1/2
2 (S−

k ), j ∈ J−
m, k = 1, n, as p →∞, i.e., u0(t) ∈ D(A(t)).

The Sobolev space W 2m+1
2 (Ω) can be expanded in the direct sum W 2m+1

2 (Ω) =
◦

W
2m+1
2 (Ω)⊕

W2m+1
2 (Ω), where W2m+1

2 (Ω) is the orthogonal subspace to the Sobolev space
◦

W
2m+1
2 (Ω) that

is, to the set of all functions u ∈ W 2m+1
2 (Ω) such that γju|S = 0, j = 0, 2m. We define

the projection operators P (t) : W 2m+1
2 (Ω) → D(A(t)) with use of the boundary operators

Γj(t), j∈Jm, and Γj,k(t), j∈J−
m, k = 1, n, in a way that differs from that in [1, p. 143] but

is equivalent and more general.
Definition 2. For the operators P (t) the projection of a function u ∈ W 2m+1

2 (Ω) are
defined by P (t)u = u(t), where u(t)∈(8) and inf

v(t)
‖u − v(t)‖2m+1,Ω = ‖u − u(t)‖2m+1,Ω, the

infimum being taken for all v(t)∈D(A(t)), t ∈ [0, T ].
The following assertion describes the action of the projections P (t).
Lemma 1. Let the projection operators P (t) be defined on D(A(t)) in the space W 2m+1

2 (Ω).
For each function u∈W 2m+1

2 (Ω), there exists a unique function ũ(t)∈D(A(t)) with boundary
values 

γjũ(t) =

i<j∑
i∈J−m

ai,j(t)γiu, j∈Jm, on S,

γjũ(t) = γju, j /∈Jm ∪ J−
m, on S,

γjũ(t) =

i<j∑
i∈J−m

ai,j(t)γiu, j∈J−
m, on S−

k ,

γjũ(t) = γju, j∈J−
m, on S+

k = S\S−
k , k = 1, n,

(9)

in W
2m−j+1/2
2 (S), j = 0, 2m, such that P (t)u = ũ(t) in W 2m+1

2 (Ω) for all t∈[0, T ], provided
that

γjũ(t) ∈ W
2m−j+1/2
2 (S) ∀j ∈ J−

m (10)

in the data (9) for all u ∈ W 2m+1
2 (Ω).

Proof. By the above-mentioned Theorem 3.2, the restriction γ = {γ0, ..., γ2m} is an

isomorphism of the Hilbert space W2m+1
2 (Ω) onto the product

2m∏
j=0

W
2m−j+1/2
2 (S) of the Hilbert

spaces W
2m−j+1/2
2 (S). Owing to the mapping γ−1, inverse to the restriction γ = {γ0, ..., γ2m},

for each t ∈ [0, T ] and for the boundary conditions (9), there exists a unique function
ũ(t) ∈ W2m+1

2 (Ω). By construction, this function ũ(t) ∈ D(A(t)). For all t ∈ [0, T ] and
v(t) ∈ D(A(t)), the squared distance ‖u− v(t)‖2

2m+1,Ω is equivalent to

2m∑
j=0

‖γj(u− v(t))‖2
2m−j+1/2,S =

∑
j∈Jm

‖γju−
i<j∑

i∈J−m

ai,j(t)γiu+

+

i<j∑
i∈J−m

ai,j(t)γi(u− v(t))‖2
2m−j+1/2,S +

∑
j /∈Jm∪J−m

‖γj(u− v(t))‖2
2m−j+1/2,S+
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+
n∑

k=1

∑
j∈J−m

‖γju−
i<j∑

i∈J−m

ai,j(t)γiu +

i<j∑
i∈J−m

ai,j(t)γi(u− v(t))‖2
2m−j+1/2,S−k

+

+
n∑

k=1

∑
j∈J−m

‖γj(u− v(t))‖2
2m−j+1/2,S+

k
,

whose minimum is obviously attained for v(t) = ũ(t). It follows that P (t)u = ũ(t) in W 2m+1
2 (Ω)

for t ∈ [0, T ]. The proof of the lemma is complete.
For each function u∈W 2m+1

2 (Ω), the function P (t)u = ũ(t) is strongly continuous with
respect to t on [0, T ] in W 2m+1

2 (Ω) provided that the coefficients ai,j(t) are strongly continuous
with respect to t in L(W

2m−i+1/2
2 (S)), i ∈ J−m, j ∈ Jm. The projections P (t) have a weak

derivative with respect to t in W 2m+1
2 (Ω), provided that the coefficients ai,j(t) are weakly

differentiable with respect to t in L(W
2m−i+1/2
2 (S)), i ∈ J−m, j ∈ Jm.

Lemma 2. Let the coefficients ai,j(t) be strongly continuous with respect to t

in L(W
2m−i+1/2
2 (S)), i ∈ J−m, j ∈ Jm, and have weak derivatives a′i,j(t) ∈

L∞(]0, T [, L(W
2m−i+1/2
2 (S)), i∈J−m, j∈Jm, with respect to t. For each function u ∈

W 2m+1
2 (Ω), for almost all t, there exists a function w̃(t) ∈ W2m+1

2 (Ω) with boundary values

γjũ
′(t) =

i<j∑
i∈J−m

a′i,j(t)γiu, j∈Jm, on S,

γjũ
′(t) = 0, j /∈Jm ∪ J−

m, on S,

γjũ
′(t) =

i<j∑
i∈J−m

a′i,j(t)γiu, j∈J−
m, on S−

k ,

γjũ
′(t) = 0, j∈J−

m, on S+
k , k = 1, n,

(11)

in W
2m−j+1/2
2 (S), j = 0, 2m, (ũ(t) is the function in Lemma 1) such that

P ′(t)u = w̃(t) for almost all t (12)

in the space W 2m+1
2 (Ω) provided that

γjũ
′(t)∈W

2m−j+1/2
2 (S) ∀j∈J−

m (13)

in the data (11) for all u∈W 2m+1
2 (Ω).

Proof. In the boundary data (9), for almost all t, we pass to weak limits in the quotient
τ−1(ũ(t + τ) − ũ(t)) in the spaces W

2m−j+1/2
2 (S), j = 0, 2m, as τ→0 and use the weak

differentiability of the coefficients ai,j(t) with respect to t in L(W
2m−i+1/2
2 (S)), i ∈ J−m, j ∈ Jm;

then we obtain the boundary values (11), which are taken by the continuation mapping γ−1

to a unique function w̃(t) ∈ W2m+1
2 (Ω). Since the isomorphism γ−1 takes weak convergent

sequences in
2m∏
j=0

W
2m−j+1/2
2 (S) to weak convergent sequences in W2m+1

2 (Ω) and vice versa, we

have P ′(t)u = w̃(t) in W 2m+1
2 (Ω) for almost t. The proof of this lemma and hence property (i)

of the projections P (t) are complete.
By using Lemmas 1 and 2 one can prove the following assertion.
Theorem 5. Let the coefficients Dβ

xaα∈C([0, T ] × Ω), |β|≤|α|, have the derivative
∂aα/∂t∈L∞(]0, T [×Ω), |α|≤2m + 1, for almost all t, let the differential expressions Ã(t) with
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the boundary conditions (8) satisfy properties I1 in Theorem 4, and let the differential operator
Ã0(t) = Ã(t) + c0I be coercive on D(A(t)) in W 2m+1

2 (Ω) (i.e., the inequality

‖u(t)‖2m+1,Ω ≤ c6‖Ã0(t)u(t)‖0,Ω ∀ u(t)∈D(A(t)) (14)

is valid for all t∈[0, T ], where c6 > 0 is a constant independent of u and t). Let their conjugates
in L2(Ω) be given by some differential expressions

Ã∗(t) =
∑

|α|≤2m+1

a∗α(t, x)Dα
x , Ã∗

0(t) = Ã∗(t) + c0I,

with coefficients Dβ
xa∗α∈C([0, T ]×Ω), ∂a∗α/∂t ∈ L∞(]0, T [×Ω), |β| ≤ |α| ≤ 2m + 1, and some

boundary conditions {Γ∗j(t)}J∗2m+1
satisfying the inequalities

‖(∂Ã∗(t)/∂t)v(t)‖0,Ω ≤ c7‖Ã∗
0(t)v(t)‖0,Ω ∀ v(t)∈D(A∗(t)), (15)

where c7≥0 is a constant independent of v and t. If all coefficients ai,j(t) are
strongly continuous with respect to t in L(W

2m−i+1/2
2 (S))) and have weak derivatives

a′i,j(t)∈L∞(]0, T [, L(W
2m−i+1/2
2 (S))) with respect to t in W

2m−i+1/2
2 (S), i∈J−m, j∈J−

m, for
almost all t such that{

‖a′i,j(t)γiu‖0,S ≤ c′i,j[u](t) ∀ u∈D(A(t)), i∈J−m, j∈Jm,

‖a′i,j(t)γiu‖0,S−k
≤ c

(k)
i,j [u](t) ∀ u∈D(A(t)), i∈J−m, j∈J−

m, k = 1, n,
(16)

where c′i,j, c
(k)
i,j ≥0 are constants independent of u and t, and continuation conditions (10)

and (13) are valid, then the projections P (t) : W 2m+1
2 (Ω) → D(A(t)) satisfy property II1 in

Theorem 4.
Proof. 1. Property (i) of the projections P (t) follows from Lemmas 1 and 2.
2. If the differential operators A(t) satisfy Condition I1, then there exist their bounded

inverse operators A−1
0 (t) on L2(Ω) and u(t) = A−1

0 (t)g∈D(A(t)) for arbitrary g∈L2(Ω). Suppose
that for an arbitrary given value t0∈[0, T ] some sequence tp→t0 converges to t0 as p→∞. By
virtue of the inequality ‖u(t)‖2m+1,Ω ≤ c6‖g‖0,Ω, which follows from (14), one can single out a
subsequence tl → t0 such that u(tl) → w0 weakly in W 2m+1

2 (Ω) as l →∞. By passing to weak
limits in the boundary operators Γj(tl)u(tl) = 0 in W

2m−j+1/2
2 (S), j∈Jm, and Γj,k(tl)u(tl) = 0

in W
2m−j+1/2
2 (S−

k ), j ∈ J−
m, k = 1, n, as l→∞ and by using the strong continuity of their

coefficients ai,j(t) with respect to t in W
2m−j+1/2
2 (S), i ∈ J−m, j ∈ Jm, we obtain Γj(t0)w0 =

0, j ∈ Jm, and Γj,k(t0)w0 = 0, j ∈ J−
m, k = 1, n, i.e., w0 ∈ D(A(t0)). Therefore, there exists a

function g0∈L2(Ω) such that A0(t0)w0 = g0. Since the coefficients a∗α of the differential operators
Ã∗(t) are continuous with respect to t for each v∈W 2m+1

2 (Ω), we trove ‖Ã∗
0(tl)v−Ã∗

0(t0)v‖0,Ω→0
as l →∞. So the right-hand sides of the relations

(v, g − g0)0,Ω = ([Ã∗
0(tl)− Ã∗

0(t0)]v, u(tl))0,Ω + (Ã∗
0(t0)v, u(tl)− w0)0,Ω

tend to zero as l→∞ for all v∈
◦

W
2m+1
2 (Ω). The symbols (·, ·)p,Ω stand for the inner products

in the Sobolev space W p
2 (Ω). By virtue of density of the set

◦
W 2m

2 (Ω) in L2(Ω), we have g0 = g
in L2(Ω), and therefore, w0 = A−1

0 (t)g = u(t0), i.e., the sequence u(tl) → u(t0) weakly in
W 2m+1

2 (Ω) as l →∞. Since the sequence tp is arbitrary, it follows that u(t) = A−1
0 (t)g is weakly

continuous functions with respect to t on [0, T ] in the Sobolev space W 2m+1
2 (Ω).
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Let us show that the functions u(t) = A−1
0 (t)g are strongly continuous with respect to t in

the space W 2m+1
2 (Ω). By virtue of the inequalities

‖u(t)− u(t0)‖2m+1,Ω ≤ c6‖Ã0(t)[u(t)− u(t0)]‖0,Ω,

to this end it suffices to show that their right-hand sides tend to zero as t → t0. Obviously,
‖Ã0(t)u − Ã0(t0)u‖0,Ω → 0 for each u∈W 2m+1

2 (Ω) as t→t0, since the coefficients aα of the
differential operators Ã(t) are continuous with respect to t and hence ‖Ã0(t)u‖0,Ω→‖Ã0(t0)u‖0,Ω

as t→t0. Therefore, the squared norms

‖Ã0(t)u(t)− Ã0(t)u(t0)‖2
0,Ω = ‖g‖2

0,Ω − 2Re(g, Ã0(t)u(t0))0,Ω + ‖Ã0(t)u(t0)‖2
0,Ω

tend to zero as t → t0 for u(t) = A−1
0 (t)g.

Now, by using Lemma 2, we prove the weak differentiability of u(t) = A−1
0 (t)g with respect

to t.
Lemma 3. Let the assumptions of Theorem 5 [without inequalities (15) и (16)] be valid.

Then for the function u(t) = A−1
0 (t)g the convergence

τ−1P (t + τ)(u(t + τ)− u(t)) → w(t) weakly in W 2m+1
2 (Ω) as τ → 0,

is valid for each g∈L2(Ω) and for almost all t, and there exists a unique function
w̃(t)∈W2m+1

2 (Ω) with the boundary values (11) for u = u(t) such that

u′(t) = −A−1
0 (t)(∂Ã(t)/∂t)u(t)− A−1

0 (t)Ã0(t)w̃(t) + w̃(t), (17)

P (t)u′(t) = −A−1
0 (t)(∂Ã(t)/∂t)u(t)− A−1

0 (t)Ã0(t)w̃(t) (18)

for almost all t.
Proof. The functions u(t)∈D(A(t)) and v∈W 2m+1

2 (Ω) satisfy the identities

τ−1(P (t + τ)[u(t + τ)− u(t)], v)2m+1,Ω = τ−1([P (t + τ)− P (t)]u(t + τ), v)2m+1,Ω−

−τ−1([P (t + τ)− P (t)]u(t), v)2m+1,Ω + τ−1(P (t)[u(t + τ)− u(t)], v)2m+1,Ω (19)

for each t ∈ [0, T ]. Since the self-adjoint operators P (t) are weakly differentiable with respect
to t for almost all t and the functions u(t) = A−1

0 (t)g is strongly continuous with respect to t
on [0, T ] in W 2m+1

2 (Ω), we have

τ−1([P (t + τ)− P (t)]u(t + τ), v)2m+1,Ω =

= τ−1(u(t + τ), [P (t + τ)− P (t)]v)2m+1,Ω → (u(t), P ′(t)v)2m+1,Ω

for the first term on the right-hand side in (19) as τ → 0 for almost all t. By Lemma 2, the her
second term has the limit

τ−1([P (t + τ)− P (t)]u(t), v)2m+1,Ω → (P ′(t)u(t), v)2m+1,Ω

as τ → 0 for almost all t. To compute the limit of the third term on the right-hand side in (19),
we need the following assertion.

Lemma 4. [1, p. 144]. Let the assumptions of Lemma 3 be satisfied, and let P (t) :
W 2m+1

2 (Ω) → D(A(t)) be orthogonal projection operators. Then for each u, v∈W 2m+1
2 (Ω), there

exist functions wτ (t) [respectively, vτ (t)] in W 2m+1
2 (Ω) such that
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P (t + τ)u− wτ (t)∈D(A(t)) [respectively, P (t)v − vτ (t)∈D(A(t + τ))]

and

τ−1wτ (t) → w′(t) [respectively, τ−1vτ (t) → v′(t)] weakly in W 2m+1
2 (Ω) as τ → 0

for almost all t.
Proof. To prove the parenthesized assertions, we supplement the boundary conditions
γjvτ (t)−

i<j∑
i∈J−m

ai,j(t + τ)γivτ (t) = −
i<j∑

i∈J−m

[ai,j(t + τ)− ai,j(t)]γiv(t), j∈Jm, on S,

γjvτ (t)−
i<j∑

i∈J−m

ai,j(t + τ)γivτ (t) = −
i<j∑

i∈J−m

[ai,j(t + τ)− ai,j(t)]γiv(t), j∈J−
m, on S−

k ,

k = 1, n,

(20)

with the boundary conditions

γjvτ (t) = 0, j /∈Jm ∪ J−
m, on S; γjvτ (t) = 0, j ∈ J−

m, on S+
k , k = 1, n. (21)

By using the mapping γ−1, on the basis of the resulting boundary values γjvτ (t), j = 0, 2m, we
find functions vτ (t)∈W2m+1

2 (Ω) such that v(t)−vτ (t)∈D(A(t+τ)) for all small τ . By passing in
τ−1vτ (t) to weak limit in W 2m+1

2 (Ω) as τ → 0, with the use of (20), (21) we trove the boundary
values

γjv
′(t) = −

i<j∑
i∈J−m

a′i,j(t)γiv(t), j∈Jm, on S,

γjv
′(t) = −

i<j∑
i∈J−m

a′i,j(t)γiv(t), j∈J−
m, on S−

k , k = i, n,

γjv
′(t) = 0, j /∈Jm ∪ J−

m, on S; γjv
′(t) = 0, j ∈ J−

m, on S+
k , k = 1, n,

which, in view of the continuation mapping γ−1, corresponds to some function v′(t)∈W2m+1
2 (Ω).

The proof of the second assertion of Lemma 4 is complete. The first assertion can be proved in
a similar way. The proof of Lemma 4 is complete.

Thus, by virtue of the second assertion of Lemma 4 and the main properties of the
projections P (t), we have

(u(t + τ)− u(t), P (t)v)2m+1,Ω = (P (t + τ)u, P (t)v − vτ (t))2m+1,Ω +

+(P (t + τ)u, vτ (t))2m+1,Ω − (u, P (t)v)2m+1,Ω = (u, P (t)v − vτ (t))2m+1,Ω +

+(P (t + τ)u, vτ (t))2m+1,Ω − (u, P (t)v)2m+1,Ω = (P (t + τ)u− u, vτ (t))2m+1,Ω.

Hence it follows that

τ−1(P (t)[u(t + τ)− u(t)], v)2m+1,Ω → (P (t)u− u, v′(t))2m+1,Ω as τ → 0

for almost all t and for each v∈W 2m+1
2 (Ω).

As a result, by summing the resulting limits for the terms occurring on the right-hand side
in identity (19), we obtain

τ−1(P (t + τ)[u(t + τ)− u(t), v])2m,Ω → (P (t)u− u, v′(t))2m,Ω as τ → 0
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for each v∈W 2m+1
2 (Ω) and for almost t. Hence the functions u(t) = A−1

0 (t)g for all g ∈ L2(Ω)
have the weak derivative u′(t) with respect to t in W 2m+1

2 (Ω) for almost all t. The prove of
property (ii) of the projections P (t) is complete.

Let us compute this weak derivative. The computation of weak derivatives with respect to
t in the equation Ã0(t)u(t) = g in the space W 2m+1

2 (Ω) and in the boundary data (11) in the
spaces W

2m−j+1/2
2 (S), j = 0, 2m, necessitates considering the boundary value problems

Ã0(t)u
′(t) = −(∂Ã(t)/∂t)u(t), x∈Ω,

Γj(t)u
′(t) =

i<j∑
i∈J−m

a′i,j(t)γiu(t), j∈Jm, on S,

Γj, k(t)u
′(t) =

i<j∑
i∈J−m

a′i,j(t)γiu(t), j∈J−
m, on S−

k , k = 1, n,

for almost all t. As was shown above, for almost all t the boundary data (11) for the function
u = u(t) corresponds to the function w̃(t)∈W2m+1

2 (Ω). Then the function w(t) = u′(t) − w̃(t)
is a solution of the boundary value problems

A0(t)w(t) = −(∂Ã(t)/∂t)u(t)− Ã0(t)w̃(t), x∈Ω,
Γj(t)w(t) = 0, j∈Jm, on S; Γj, k(t)w(t) = 0, j∈J−

m, on S−
k , k = 1, n,

for almost all t; consequently,

w(t) = −A−1
0 (t)(∂Ã(t)/∂t)u(t)− A−1

0 (t)Ã0(t)w̃(t)

for almost all t, and the derivative u′(t) can be expressed by formula (17).
For almost all t and for all v(t)∈D(A(t)), the squared distance ‖u′(t) − v(t)‖2

2m+1,Ω is
equivalent to

2m∑
j=0

‖γj(u
′(t)− v(t))‖2

2m−j+1/2,S =
∑
j∈Jm

‖γj(u
′(t)− w(t))+

+

i<j∑
i∈J−m

ai,j(t)γi(w(t)− v(t))‖2
2m−j+1/2,S +

∑
j /∈Jm∪J−m

‖γj(u
′(t)− v(t))‖2

2m−j+1/2,S+

+
n∑

k=1

∑
j∈J−m

‖γj(u
′(t)− w(t)) +

i<j∑
i∈J−m

ai,j(t)γi(w(t)− v(t))‖2
2m−j+1/2,S−k

+

+
n∑

k=1

∑
j∈J−m

‖γj(u
′(t)− v(t))‖2

2m−j+1/2,S+
k
,

whose minimum, by force of the boundary data (11) for u = u(t), is obviously attained for
v(t) = w(t). It follows that P (t)u′(t) = w(t) in W 2m+1

2 (Ω) for almost all t. Therefore, the
relation (18) is valid for almost all t. The proof of Lemma 3 is complete.

3. Thus, by passing to the conjugate in L2(Ω) and by using formula (17), we have the
relations

(u′(t), h)0,Ω = −(u(t), (∂Ã∗(t)/∂t)A∗−1
0 (t)h)0,Ω − (A−1

0 (t)Ã0(t)w̃(t)− w̃(t), h)0,Ω (22)

for almost all t and for all h∈L2(Ω). For the first term on the right-hand side in
this relation, the desired estimates (7) follow from the boundedness of the the operators
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(∂Ã∗(t)/∂t)A∗−1
0 (t) ∈ L∞(]0, T [, L(H)) by virtue of inequalities (15). The use of Greens’s

formula for integration by parts to the inequality

‖A−1
0 (t)Ã0(t)v‖2

0,Ω ≤ c8(‖v‖2
0,Ω +

2m∑
j=0

‖γjv‖2
0,S) ∀ v∈W 2m+1

2 (Ω), (23)

where c8≥1 is a constant independent of v and t. The conjugate of the isometry [4, pp 20–56]

γ : W2m+1
2 (Ω) →

2m∏
j=0

W
2m−j+1/2
2 (S)

is given by the isometry

γ∗ :
2m∏
j=0

W
−(2m−j+1/2)
2 (S) →W−2m−1

2 (Ω)

of the antidual spaces
2m∏
j=0

W
−(2m−j+1/2)
2 (S) and W−2m−1

2 Ω) onto the spaces
2m∏
j=0

W
2m−j+1/2
2 (S)

and W2m+1
2 (Ω), respectively. The restriction of the mapping γ∗ to

2m∏
j=0

W
2m−j+1/2
2 (S) is the

mapping γ−1. By applying the main interpolation theorem [5, p. 41] to the operator

γ∗∈L
( 2m∏

j=0

W
2m−j+1/2
2 (S),W2m+1

2 (Ω)
)⋂

L
( 2m∏

j=0

W
−(2m−j+1/2)
2 (S), W−2m−1

2 (Ω)
)

with respect to the parameter θ∈]0, 1[, we obtain the inclusion γ∗ ∈ L
( 2m∏

j=0

W
−j+1/2
2 (S), L2(Ω)

)
,

for θ = 1/2, i.e.,

‖v‖2
0,Ω ≤ c9

2m∑
j=0

‖γjv‖2
−j+1/2,S ∀ v∈W 2m+1

2 (Ω)2, (24)

where c9 > 0 is a constant independent of v and t. Then the desired estimates (7) for the second
term in (22) follow from inequalities (23), (24) and (16) by virtue of the boundary data (11) for
u = u(t). Property (iii) of the projections P (t) is valid. The proof of the theorem is compete.

Remark 4. Theorem 5 generalizes Theorem 6.1 in [1, p. 142] for self-adjoint leading parts
A1(t) of the operator coefficient A(t) to the case of nonsymmetric operators A1(t) of accretive
operators A(t).

6. Applications. Let us apply the abstract obtained results to the investigation of well-
posed solvability of new class of mixed problems for odd-order linear partial differential
equations with time-dependent boundary conditions, which has not been researched by anybody
yet.

In the cylinder G =]0, T [×Ω of the variables t and x = (x1, ..., xn), where Ω ⊂ Rn is a
bounded domain with smooth boundary S∈C∞, we investigate the nonclassical equations

∂u(t, x)/∂t +
∑

|α|≤2m+1

aα(t, x)Dα
xu(t, x) = f(t, x), m = 0, 1, ..., (25)
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with the boundary conditions (8) on S for t∈[0, T ] and the initial condition

u(0, x) = u0(x), x ∈ Ω. (26)

Let the differential operators Ã(t) =
∑

|α|≤2m+1

aα(t, x)Dα
x with the boundary conditions (8)

satisfy the following conditions.
I3. The coefficients aα of the equations (25) satisfy inclusion Dβ

xaα∈C(Ω), |β|≤|α|≤ 2m +

1, for each t∈[0, T ], the differential operators Ã(t) are lower semibounded in L2(Ω) on
W 2m+1

2 (Ω; {Γj(t)}Jm∪J−m
) = {u(t)∈W 2m+1

2 (Ω) : u(t)∈(8)} and their conjugates in L2(Ω) on
W 2m+1

2 (Ω; {Γj(t)}Jm∪J−m
) are given by some differential operators Ã∗(t) =

∑
|α|≤2m+1

a∗α(t, x)Dα
x

with some adjoint boundary conditions {Γ∗j(t)}J∗m .
The coefficients a∗α of their conjugates satisfy inclusion Dβ

xa∗α∈C(Ω), |β|≤|α|≤ 2m + 1,

for each t∈[0, T ], the differential operators Ã∗(t) are also lower semibounded in L2(Ω) on
W 2m+1

2 (Ω; {Γj(t)}Jm∪J−m
) = {u(t)∈W 2m+1

2 (Ω) : u(t)∈(Γ∗j(t)}J∗m)}.
II3. All coefficients aα belong to C(G), and their derivative ∂aα/∂t belongs to L∞(G). The

operators Ã0(t) = Ã(t)+c0I are coercive on W 2m+1
2 (Ω; {Γj(t)}Jm∪J−m

) in L2(Ω) for some c0 > 0
and for any t∈[0, T ]; i.e.,

‖u‖2m+1,Ω ≤ c10‖Ã0(t)u‖0,Ω ∀ u∈W 2m+1
2 (Ω; {Γj(t)}Jm∪J−m

),

where c10 > 0 is a constant independent of u and t. All coefficients a∗α belong to C(G), their
derivative ∂a∗α/∂t belongs to L∞(G), and

‖(∂Ã∗(t)/∂t)v‖0,Ω ≤ c11‖Ã∗
0(t)v‖0,Ω ∀ v∈W 2m+1

2 (Ω; {Γ∗j(t)}J∗m), (27)

where c11≥0 is a constant independent of v and t. All coefficients ai,j(t) of boundary conditions
belong to C[0, T ], their derivative ∂ai,j(t)/∂t belongs to L∞(0, T ), they satisfy inequality (16),
and functions admit the continuations (10) and (13) from S−

k to the entire set Ω.
Since Conditions I3 − II3 provide the validity of properties I1 − II1 in V = W 2m+1

2 (Ω) and,
therefore, of Conditions I − II in H = L2(Ω), from Theorems 1, 3–5, we obtain the following
assertion.

Theorem 6. If Conditions I3 − II3 are satisfied, then for arbitrary functions
f ∈ L2(]0, T [, W−m

2 (Ω; {Γ∗j(t)}J∗m)) and u0∈L2(Ω), there exist unique weak solutions
u∈L2(G) of the mixed problems (25), (8), (26).

Here W−m
2 (Ω; {Γ∗j(t)}J∗m) are the antiduel spaces of the Hilbert spaces Wm

2 (Ω; {Γ∗j(t)}J∗m),

which are obtained by the closure of the sets W 2m+1
2 (Ω; {Γ∗j(t)}J∗m) in Hermitian norms

〈·〉(t), t ∈ [0, T ], corresponding to the formula (4).
For example, the Conditions I3 − II3 are satisfied for the following mixed problem for the

linearized Korteweg-de Vries equation:

∂u

∂t
− a(t)

∂3u

∂x3
= f(t, x), 0 < t < T, 0 < x < l, (28)

∂2u(t, 0)

∂x2
= a1(t)u(t, 0),

∂2u(t, l)

∂x2
= −a2(t)u(t, l),

∂u(t, 0)

∂x
= 0, 0 ≤ t ≤ T, (29)

u(0, x) = u0(x), 0 < x < l, (30)
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where a∈C[0, T ] is a strictly positive coefficients, ∂a/∂t∈L∞(0, T ), ai(t) ∈ C[0, T ] are
nonnegative coefficients, ∂ai/∂t ∈ L∞(0, T ), i = 1, 2, and

if ∃ t0∈[0, T ], such that a1(t0) = 0 (respectively, a2(t0) = 0),

then a1 ≡ 0 (respectively, a2 ≡ 0). (31)

1). The differential operators −Ã(t) = a(t)∂3/∂x3 with the boundary conditions (29) are
dissipative in L2(0, l). Their conjugates in L2(0, l) are given by the differential expressions
−Ã∗(t) = −a(t)∂3/∂x3 with the boundary conditions

∂2v(t, 0)

∂x2
= −a1(t)v(t, 0),

∂2v(t, l)

∂x2
= a2(t)v(t, l),

∂v(t, l)

∂x
= 0, 0 ≤ t ≤ T, (32)

which are also dissipative in L2(0, l).
2). The operators Ã0(t) = Ã(t)+ I are obviously coercive on W 3

2 (Ω; {Γj(t)}J1∪J−1
) in L2(Ω)

for c0 = 1 and for any t∈[0, T ]. Here we note that the squared norm ‖Ã0(t)w‖2
0,Ω is equal to

‖Ã0(t)w‖2
0,Ω = 2a(t)a1(t)|w(0)|2 + 2a(t)a2(t)|w(l)|2+

+ a(t)|∂w(l)/∂x|2 + a2(t)‖∂3w/∂x3‖2
0,Ω + ‖w‖2

0,Ω, Ω =]0, l[.

The inequality (27) for m = 1 is also true. By virtue of condition (31), we have the inequality
(16) in the Theorem 5, where the squared norm [·]2(t) is equal to√

Re(Ã0(t)u, u)0,Ω = (a(t)a1(t)|u(0)|2+ +a(t)a2(t)|u(l)|2 + (a(t)/2)|∂u(l)/∂x|2 + ‖u‖2
0,Ω)1/2.

The Conditions (10) and (13) on the continuation of functions from the boundary on the entire
domain are obviously valid for a segment [5]. The verification of conditions I3−III3 is finished.
Therefore, Theorem 6 implies the following assertion.

Theorem 7. If 0 < a0 ≤ a(t), a1(t)≥0, a2(t) ≥ 0, a(t)∈C[0, T ], ∂a(t)/∂t ∈L∞(0, T ),
ai∈C[0, T ], ∂ai/∂t∈L∞(0, T ), i = 1, 2, and condition (31) is true, then for each

functions f∈L2(]0, T [, W−1
2 (]0, l[; (32)t)) and u0∈L2(0, l) there exists a unique weak solution

u∈L2(]0, T [×]0, l[) of the mixed problem (28)–(30).
Here W−1

2 (]0, l[; (32)t) – are the antidual spaces of the Hilbert spaces W 1
2 (]0, l[; (32)t), which

are obtained by the closure of the set of all functions u(t)∈W 3
2 (0, l) satisfying the boundary

conditions (32) in the norms 〈·〉(t) which is equal to√
Re(Ã∗

0(t)v, v)0,Ω = (a(t)a1(t)|v(0)|2 + a(t)a2(t)|v(l)|2 + (a(t)/2)|∂v(0)/∂x|2 + ‖v‖2
0,Ω)1/2.
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