A GENERALIZATION OF LIONS' THEOREMS TO ACCRETIVE OPERATOR COEFFICIENTS FOR FIRST-ORDER OPERATOR-DIFFERENTIAL EQUATIONS WITH VARIABLE DOMAINS

F. E. Lomovtsev

Аннотация

In the present paper three well-known Theorems of correct solvability in [1, p. 129, 138, 142] are generalized to evolution operator-differential equation with time-variable domains of accretive operators and to new class of the mixed problems for odd-order partial differential equations with time-dependent boundary conditions of general form.

Key Words: regularization, incorrect problem, non-local condition, differential-operator equation, Hilbert space

Classification: 35K90, 35L90

1. Statement of the Cauchy problem. In a Hilbert space H with inner product (\cdot, \cdot) and norm $|\cdot|$, on consider the Cauchy problem for operator-differential equation

$$\frac{du}{dt} + A(t)u = f, \quad t \in]0, T[, \tag{1}$$

with the initial condition

$$u(0) = u_0 \in H, \tag{2}$$

where u and f are functions of t ranging in H, and A(t) are linear unbounded closed operators in H with t-depending domains $D(A(t)), t \in [0, T]$.

One assume that the operators A(t) satisfy the following conditions.

I. The operators A(t) and their conjugates $A^*(t)$ in H with t-depending domains $D(A^*(t))$ for all $t \in [0, T]$ satisfy the inequalities

$$[u]_{(t)}^2 \equiv Re(A(t)u + c_0 u, u) \ge c_1 |u|^2 \quad \forall \ u \in D(A(t)),$$
(3)

$$\langle v \rangle_{(t)}^2 \equiv Re(A^*(t)v + c_0 v, v) \geq c_1 |v|^2 \quad \forall \ v \in D(A^*(t)),$$
 (4)

where $c_0 \ge 0$ and $c_1 > 0$ are constants independent of u, v and t.

II. The inverses $A_0^{-1}(t)$ of the operators $A_0(t) = A(t) + c_0 I$ in H are strongly continuous with respect to $t \in [0, T]$ in H, [2, p. 22] and for almost all $t \in [0, T]$ they have a weak derivative $dA_0^{-1}(t)/dt \in L_{\infty}(]0, T[, \mathfrak{L}(H))$, with respect to $t \in [0, T]$ in H [3, p. 172], such that

$$|((dA_0^{-1}(t)/dt)g,h)| \leq c_2[A_0^{-1}(t)g]_{(t)}|h| \quad \forall g, h \in H,$$
(5)

where $c_2 \ge 0$ is a constant independent of g, h and t.

First, we introduce needing spaces for the considered Cauchy problem. Let H_t^{*-} be the antidual Hilbert spaces of the Hilbert spaces H_t^{*+} , which are obtained as the closure of the sets $D(A^*(t))$ in the Hermitian norms $\langle \cdot \rangle_{(t)}$, $t \in [0, T]$, in (4). Throughout the sequel, all considered

abstract functions and operator-valued functions of the variable t are supposed to be strongly measurable in the Lebesgue measure dt on [0,T] in H. We denote the Hilbert spaces $\mathcal{H} = L_2(]0,T[, H)$ and $\mathcal{H}^{*-} = L_2(]0,T[, H_t^{*-})$.

Second, we define weak solutions of he considered Cauchy problem.

Definition 1. A function $u \in \mathcal{H}$ is called a *weak solution* of the Cauchy problem (1) – (2) for right-hand sides $f \in \mathcal{H}^{*-}$ of the equation (1) and $u_0 \in H$ of the initial condition (2), if

$$\int_{0}^{T} \left\{ \left(u(t), A^{*}(t)\varphi(t)\right) - \left(u(t), \frac{d\varphi(t)}{dt}\right) \right\} dt = \int_{0}^{T} \left\langle f(t), \varphi(t) \right\rangle_{(t)} dt + \left(u_{0}, \varphi(0)\right) dt$$

for all $\varphi \in \widetilde{\Phi} \equiv \{\widetilde{\varphi} \in \mathcal{H} : \widetilde{\varphi}(t) \in D(A^*(t)) \forall t \in [0, T]; \text{ слабая производная } d\widetilde{\varphi}/dt, A^*(t)\widetilde{\varphi} \in \mathcal{H}; \widetilde{\varphi}(T) = 0\}$, where $\langle \cdot, \cdot \rangle_{(t)}$ are the sesquilinear forms of antiduality between the Hilbert spaces H_t^{*+} and H_t^{*-} .

Let us prove existence and uniqueness theorems for weak solutions of the Cauchy problem (1) - (2) in the sense of Definition 1 below and of new mixed problems for odd-order partial differential equations with time-dependent boundary conditions in general form. We first prove existence theorem for weak solutions of this Cauchy problem.

Remark 1. If the operators A(t) satisfy Condition I, then for each $t \in [0, T]$ the norms $[A_0^{-1}(t)g]_{(t)} = \langle A_0^{*-1}(t)g \rangle_{(t)}$ for all $g \in H$, where $A_0^{*-1}(t)$ are the inverse operators of $A_0^*(t) = A^*(t) + c_0 I$.

2. Existence theorem. We formulate and prove the following existence theorem for weak solutions.

Theorem 1. If Condition I is just, then for each $f \in \mathcal{H}^{*-}$ and $u_0 \in H$, there exists a weak solution $u \in \mathcal{H}$ of the Cauchy problem (1) - (2).

Proof. The proof use the following projection Lions' theorem in [1, p. 37].

Teopema 2. Let F be a Hilbert space with Hermitian norm $\|\cdot\|_F$ and let Φ be a pre-Hilbert space with Hermitian norm $\|\cdot\|\cdot\|$ and continuously embedded in F, i.e., there exists a constant $c_3 > 0$ such that

$$\|\varphi\|_F \leq c_3 \||\varphi\|\| \quad \forall \varphi \in \Phi.$$

Let $E(w, \varphi)$ be a given sesquilinear form on $F \times \Phi$ continuous with respect to w on F for each $\varphi \in \Phi$, and suppose that there exists a constant $c_4 > 0$ such that

$$|E(\varphi,\varphi)| \geq c_4 |||\varphi|||^2 \quad \forall \varphi \in \Phi.$$

If the antilinear functional $L(\varphi)$ is continuous with respect to φ on Φ , then there exists an element $w \in F$ such that $E(w, \varphi) = L(\varphi)$ for all $\varphi \in \Phi$.

On Hilbert space $F = \mathcal{H}$ and pre-Hilbert space $\Phi = \Phi$ with the norm

$$|||\varphi||| = \left(\int_{0}^{T} \left\langle \varphi(t) \right\rangle_{(t)}^{2} dt + |\varphi(0)|^{2} \right)^{1/2},$$

we take respectively the following sesquilinear form and antilinear functional

$$E(w,\varphi) = \int_{0}^{T} e^{2c_0 t} \left\{ (w(t), A^*(t)\varphi(t)) - \left(w(t), \frac{d\varphi(t)}{dt}\right) \right\} dt,$$

$$L(\varphi) = \int_{0}^{T} \langle f(t), \varphi(t) \rangle_{(t)} dt + (u_0, \varphi(0)).$$

For each $\varphi \in \widetilde{\Phi}$, the form $E(w, \varphi)$ is obviously continuous with respect to w on $F = \mathcal{H}$ and, as integration by parts shows, $|E(\varphi, \varphi)| \geq Re E(\varphi, \varphi) \geq (1/2)|||\varphi|||^2$ for all $\varphi \in \widetilde{\Phi}$. For any $f \in \mathcal{H}^{*-}$ and $u_0 \in H$, the functional $L(\varphi)$ is obviously continuous with respect to φ on $\widetilde{\Phi}$. Thus, by force of Theorem 2 for each $f \in \mathcal{H}^{*-}$ and $u_0 \in H$, there exists a solution $w \in \mathcal{H}$ of the equation $E(w, \varphi) = L(\varphi) \quad \forall \varphi \in \widetilde{\Phi}$ and, therefore, a weak solution $u = \exp\{2c_0t\}w \in \mathcal{H}$ of the Cauchy problem (1) - (2). The proof of this theorem is complete.

3. Uniqueness theorem. We formulate and prove the following uniqueness theorem for weak solutions.

Theorem 3. If Conditions I–II are satisfied, then for each $f \in \mathcal{H}^{*-}$ and $u_0 \in H$ the weak solution $u \in \mathcal{H}$ of the Cauchy problem (1) - (2) is unique.

Proof. If $u \in \mathcal{H}$ is a weak solution of the Cauchy problem (1) – (2) for f = 0 and $u_0 = 0$, then we have the identity

$$\int_{0}^{T} \left\{ (u(t), A^{*}(t)\varphi(t)) - \left(u(t), \frac{d\varphi(t)}{dt}\right) \right\} dt = 0 \quad \forall \varphi \in \Phi.$$

We may prove that the operators $A_0^{*-1}(t)$ have a weak derivative $dA_0^{*-1}(t)/dt \in L_{\infty}(]0, T[, \mathfrak{L}(H))$, with respect to t for almost all $t \in]0, T[$ in H. By setting $\varphi = A_0^{*-1}(t)w$, where $w(t) = -\int_t^T e^{-2cs}u(s)ds$ or $u = e^{2ct}(dw/dt)$ and w(T) = 0, and by extracting the real part, we obtain the equality

$$Re\int_{0}^{T} e^{2ct} \left\{ \left(\frac{dw}{dt}, w\right) - \left(\frac{dw}{dt}, c_0 A_0^{*-1}(t)w + \frac{dA_0^{*-1}(t)}{dt}w + A_0^{*-1}(t)\frac{dw}{dt}\right) \right\} dt = 0.$$

After integration by parts in the first inner product, we trove the equality

$$\frac{1}{2}|w(0)|^{2} + c \int_{0}^{T} e^{2ct}|w|^{2}dt + \int_{0}^{T} e^{2ct} \left\langle A_{0}^{*-1}(t)\frac{dw}{dt} \right\rangle_{(t)}^{2}dt + Re \int_{0}^{T} e^{2ct} \left(\frac{dw}{dt}, c_{0}A_{0}^{*-1}(t)w + \frac{dA_{0}^{*-1}(t)}{dt}w\right)dt = 0.$$
(6)

By estimating from below the left-hand side of equality (6) by means of (3), (5) and by using Remark 1, we have the inequality

$$c\int_{0}^{T} e^{2ct} |w|^2 dt + \int_{0}^{T} e^{2ct} \left\langle A_0^{*-1}(t) \frac{dw}{dt} \right\rangle_{(t)}^2 dt - (c_0 c_1^{-1/2} + c_2) \int_{0}^{T} e^{2ct} \left\langle A_0^{*-1}(t) \frac{dw}{dt} \right\rangle_{(t)} |w| dt \le 0,$$

which, together with the well-known inequality, implies that

$$\left(c - \frac{(c_0 c_1^{-1/2} + c_2)^2}{4}\right) \int_0^T e^{2ct} |w|^2 dt \le 0.$$

Hence for $c > (c_0 c_1^{-1/2} + c_2)^2/4$, we obtain w = 0 and, therefore, u = 0 in \mathcal{H} . The proof of the theorem is complete.

Remark 2. Theorems 1 and 3 generalize Theorem 1.1 in [1, p. 129] for self-adjoint leading parts $A_1(t)$ of the operator coefficient A(t) to the case of nonsymmetric operators $A_1(t)$ of accretive operators A(t). Under Conditions I–II all weak solutions of the Cauchy problem (1) - (2) satisfy the a priori estimate

$$\int_{0}^{T} |u(t)|^{2} dt \leq \frac{4}{c_{1}} \Big(\int_{0}^{T} \langle f(t) \rangle_{(-t)}^{2} dt + |u_{0}|^{2} \Big),$$

where $\langle \cdot \rangle_{(-t)}$ are the norms in the Hilbert spaces H_t^{*-} , $t \in [0, T]$, [1, Remark 1.2, p. 38].

4. Construction of the operators A(t). In a Hilbert space H we indicate one family of operators A(t) with variable domains D(A(t)) satisfying Conditions I–II. Let sets $D(A(t)), t \in [0, T]$, be closed subspaces of some Hilbert space V continuously embedded in H. Let $P(t), t \in [0, T]$, be the orthogonal projections of the space V onto D(A(t)). We assume the following conditions.

 I_1 . The linear closed operators $A(t) : H \supset D(A(t)) \to H$ satisfy the inequality (3) and their conjugates $A^*(t) : H \supset D(A^*(t)) \to H$, $t \in [0, T]$, satisfy the inequality (4).

II₁. The projection operators $P(t): V \to V, t \in [0, T]$, have the following properties.

(i) For each $u \in V$, the function P(t)u is strongly continuous with respect to t on [0, T] in V and

$$\tau^{-1}(P(t+\tau) - P(t))u \to P'(t)u$$
 weakly in V as $\tau \to 0$

for almost all t.

(*ii*) For each $g \in H$, the functions $u(t) = A_0^{-1}(t)g$ are strongly continuous with respect to t on [0, T] in V, and

$$\tau^{-1}P(t+\tau)(u(t+\tau)-u(t)) \to P(t)u'(t) \quad \text{weakly in} \quad V \quad \text{as} \quad \tau \to 0$$

for almost all t.

(*iii*) The weak derivative u'(t) = P'(t)u(t) + P(t)u'(t) taken in V satisfies the inequalities

$$|(u'(t),h)| \leq c_5[u(t)]_{(t)}|h| \quad \forall \ u(t) \in D(A(t)), \quad \forall \ h \in H$$
 (7)

for almost all t, where $c_5 \ge 0$ is a constant independent of u, h and t.

Теорема 4. The operators A(t) with properties $I_1 - II_1$ satisfy Conditions I - II respectively.

Proof. It remains to justify inequality (5). If in the identities

$$\tau^{-1}(u(t+\tau) - u(t)) = \tau^{-1}[P(t+\tau) - P(t)]u(t) + \tau^{-1}P(t+\tau)[u(t+\tau) - u(t)]$$

one passes to the weak limit in V as $\tau \to 0$, then, by using property II_1 one obtains

$$((dA_0^{-1}(t)/dt)g,h) = (u'(t),h) = (P'(t)u(t) + P(t)u'(t),h).$$

for almost all t and for arbitrary $h \in H$. The inequalities (7) are equivalent to the inequalities (5). The proof of the theorem is complete.

Remark 3. Theorem 4 generalizes Theorem 5.1 in [1, p. 138] for self-adjoint leading parts $A_1(t)$ of the operator coefficient A(t) to the case of nonsymmetric operators $A_1(t)$ of accretive operators A(t). In the Theorem 5.1 the operators P(t) are projections not onto the domains D(A(t)) as in Theorem 4 but actually onto the domains $D(A_1^{1/2}(t))$ of the square roots $A_1^{1/2}(t)$. Conditions $I_1 - II_1$ generalize the corresponding Lions' conditions. Unlike his conditions imposed on the self-adjoint leading parts $A_1(t)$, which are given by sesquilinear Hermitian forms, our conditions $I_1 - II_1$ are stated for operators A(t) themselves and in purely operator form.

5. Examples of domains D(A(t)). Let us give one example of domains D(A(t)) satisfying property II_1 in the Hilbert space $H = L_2(\Omega)$, where Ω is a bounded domain with smooth boundary $S \in C^{\infty}$ in the Euclidian space \mathbb{R}^n of the real variables $x = (x_1, ..., x_n)$.

By [1, Th. 3.2, p. 17], the values of the derivatives

$$\gamma_j u = \partial^j u / \partial \nu^j \in W_2^{2m-j+1/2}(S), \quad j = \overline{0, 2m},$$

along the outward normal ν of S are defined on S for each function u in the Sobolev space $V = W_2^{2m+1}(\Omega)$. If all coefficients $a_{i,j}(t)$ belong to the set $B([0,T], \mathfrak{L}(W_2^{2m-i+1/2}(S))), i \in J_{-m}, j \in J_m$, of functions bounded in the norm of linear continuous mappings in $W_2^{2m-i+1/2}(S)$ for each $t \in [0,T]$, then the boundary conditions

$$\begin{cases} \Gamma_{j}(t)u \equiv \gamma_{j}u(x') - \sum_{\substack{i \in J_{-m} \\ i < j}}^{i < j} a_{i,j}(t)\gamma_{i}u(x') = 0, \quad x' \in S, \quad j \in J_{m}, \\ \Gamma_{j,k}(t)u \equiv \gamma_{j}u(x') - \sum_{\substack{i < J_{-m} \\ i \in J_{-m}}}^{i < j} a_{i,j}(t)\gamma_{i}u(x') = 0, \quad x' \in S_{k}^{-}, \\ k = \overline{1, n}, \quad j \in J_{m}^{-}, \quad t \in [0, T], \quad m = 0, \ 1, \dots, \end{cases}$$

$$(8)$$

are well defined, where the sets of indices are

$$J_m = \{ j_s \in [0, ..., 2m] : s = \overline{1, q} \},\$$
$$J_m^- = \{ j_s \in ([0, ..., 2m] \setminus J_m) : s = \overline{q + 1, m + 1} \},\$$
$$J_{-m} = [0, ..., 2m] \setminus (J_m \cup J_m^-)$$

and S_k^- – are the sets of all points x' of the boundary S with negative direction cosines of the angles between the outward normal ν to S and the axes Ox_k , $k = \overline{1, n}$. We set

$$D(A(t)) = \{ u(t) \in W_2^{2m+1}(\Omega) : u(t) \in (8), \ \widetilde{A}(t)u(t) \in L_2(\Omega) \}, \ t \in [0,T],$$

where $\widetilde{A}(t) = \sum_{|\alpha| \le 2m+1} a_{\alpha}(t, x) D_x^{\alpha}$ is a differential operator. Consider the operators

$$A(t): L_2(\Omega) \supset D(A(t)) \ni u \to \widetilde{A}(t)u \in L_2(\Omega), \ t \in [0,T]$$

For each $t \in [0, T]$, the domains D(A(t)) are closed in the Sobolev space $W_2^{2m+1}(\Omega)$. Let a sequence $u_p(t) \in D(A(t))$ converge to $u_0(t)$ in the norm of space $W_2^{2m+1}(\Omega)$ as $p \to \infty$. Then, by Theorem 3.2 in [1, p. 17], the values of the boundary operators $\Gamma_j(t)u_p(t) = 0$ and $\Gamma_{j,k}(t)u_p(t) = 0$ converge respectively to the boundary operators $\Gamma_j(t)u_0(t) = 0$ in $W_2^{2m-j+1/2}(S)$, $j \in J_m$, and $\Gamma_{j,k}(t)u_0(t) = 0$ in $W_2^{2m-j+1/2}(S_k^-)$, $j \in J_m^-$, $k = \overline{1, n}$, as $p \to \infty$, i.e., $u_0(t) \in D(A(t))$.

The Sobolev space $W_2^{2m+1}(\Omega)$ can be expanded in the direct sum $W_2^{2m+1}(\Omega) = \overset{\circ}{W} \overset{2m+1}{2}(\Omega) \oplus W_2^{2m+1}(\Omega)$, where $W_2^{2m+1}(\Omega)$ is the orthogonal subspace to the Sobolev space $\overset{\circ}{W} \overset{2m+1}{2}(\Omega)$ that is, to the set of all functions $u \in W_2^{2m+1}(\Omega)$ such that $\gamma_j u|_S = 0, j = \overline{0, 2m}$. We define the projection operators $P(t) : W_2^{2m+1}(\Omega) \to D(A(t))$ with use of the boundary operators $\Gamma_j(t), \quad j \in J_m$, and $\Gamma_{j,k}(t), \quad j \in J_m^-, \quad k = \overline{1, n},$ in a way that differs from that in [1, p. 143] but is equivalent and more general.

Definition 2. For the operators P(t) the projection of a function $u \in W_2^{2m+1}(\Omega)$ are defined by P(t)u = u(t), where $u(t) \in (8)$ and $\inf_{v(t)} ||u - v(t)||_{2m+1,\Omega} = ||u - u(t)||_{2m+1,\Omega}$, the infimum being taken for all $v(t) \in D(A(t))$, $t \in [0, T]$.

The following assertion describes the action of the projections P(t).

Lemma 1. Let the projection operators P(t) be defined on D(A(t)) in the space $W_2^{2m+1}(\Omega)$. For each function $u \in W_2^{2m+1}(\Omega)$, there exists a unique function $\tilde{u}(t) \in D(A(t))$ with boundary values

$$\begin{cases} \gamma_{j}\tilde{u}(t) = \sum_{i\in J_{-m}}^{i(9)$$

in $W_2^{2m-j+1/2}(S)$, $j = \overline{0, 2m}$, such that $P(t)u = \tilde{u}(t)$ in $W_2^{2m+1}(\Omega)$ for all $t \in [0, T]$, provided that

$$\gamma_j \tilde{u}(t) \in W_2^{2m-j+1/2}(S) \ \forall j \in J_m^-$$

$$\tag{10}$$

in the data (9) for all $u \in W_2^{2m+1}(\Omega)$.

Proof. By the above-mentioned Theorem 3.2, the restriction $\gamma = \{\gamma_0, ..., \gamma_{2m}\}$ is an isomorphism of the Hilbert space $\mathcal{W}_2^{2m+1}(\Omega)$ onto the product $\prod_{j=0}^{2m} W_2^{2m-j+1/2}(S)$ of the Hilbert

spaces $W_2^{2m-j+1/2}(S)$. Owing to the mapping γ^{-1} , inverse to the restriction $\gamma = \{\gamma_0, ..., \gamma_{2m}\}$, for each $t \in [0, T]$ and for the boundary conditions (9), there exists a unique function $\tilde{u}(t) \in \mathcal{W}_2^{2m+1}(\Omega)$. By construction, this function $\tilde{u}(t) \in D(A(t))$. For all $t \in [0, T]$ and $v(t) \in D(A(t))$, the squared distance $||u - v(t)||_{2m+1,\Omega}^2$ is equivalent to

$$\sum_{j=0}^{2m} \|\gamma_j(u-v(t))\|_{2m-j+1/2,S}^2 = \sum_{j\in J_m} \|\gamma_j u - \sum_{i\in J_{-m}}^{i$$

$$+\sum_{k=1}^{n}\sum_{j\in J_{m}^{-}}\|\gamma_{j}u-\sum_{i\in J_{-m}}^{i
$$+\sum_{k=1}^{n}\sum_{j\in J_{m}^{-}}\|\gamma_{j}(u-v(t))\|_{2m-j+1/2,S_{k}^{+}}^{2},$$$$

whose minimum is obviously attained for $v(t) = \tilde{u}(t)$. It follows that $P(t)u = \tilde{u}(t)$ in $W_2^{2m+1}(\Omega)$ for $t \in [0, T]$. The proof of the lemma is complete.

For each function $u \in W_2^{2m+1}(\Omega)$, the function $P(t)u = \tilde{u}(t)$ is strongly continuous with respect to t on [0, T] in $W_2^{2m+1}(\Omega)$ provided that the coefficients $a_{i,j}(t)$ are strongly continuous with respect to t in $\mathfrak{L}(W_2^{2m-i+1/2}(S))$, $i \in J_{-m}$, $j \in J_m$. The projections P(t) have a weak derivative with respect to t in $W_2^{2m+1}(\Omega)$, provided that the coefficients $a_{i,j}(t)$ are weakly differentiable with respect to t in $\mathfrak{L}(W_2^{2m-i+1/2}(S))$, $i \in J_{-m}$, $j \in J_m$.

differentiable with respect to t in $\mathfrak{L}(W_2^{2m-i+1/2}(S))$, $i \in J_{-m}$, $j \in J_m$. Lemma 2. Let the coefficients $a_{i,j}(t)$ be strongly continuous with respect to t in $\mathfrak{L}(W_2^{2m-i+1/2}(S))$, $i \in J_{-m}$, $j \in J_m$, and have weak derivatives $a'_{i,j}(t) \in L_{\infty}(]0, T[, \mathfrak{L}(W_2^{2m-i+1/2}(S)))$, $i \in J_{-m}$, $j \in J_m$, with respect to t. For each function $u \in W_2^{2m+1}(\Omega)$, for almost all t, there exists a function $\tilde{w}(t) \in W_2^{2m+1}(\Omega)$ with boundary values

$$\begin{aligned}
\gamma_{j}\tilde{u}'(t) &= \sum_{i\in J_{-m}}^{i\leq j} a'_{i,j}(t)\gamma_{i}u, \ j\in J_{m}, \quad on \ S, \\
\gamma_{j}\tilde{u}'(t) &= 0, \quad j\notin J_{m} \cup J_{m}^{-}, \quad on \ S, \\
\gamma_{j}\tilde{u}'(t) &= \sum_{i\in J_{-m}}^{i\leq j} a'_{i,j}(t)\gamma_{i}u, \ j\in J_{m}^{-}, \quad on \ S_{k}^{-}, \\
\gamma_{j}\tilde{u}'(t) &= 0, \quad j\in J_{m}^{-}, \quad on \ S_{k}^{+}, \ k = \overline{1, n},
\end{aligned}$$
(11)

in $W_2^{2m-j+1/2}(S)$, $j = \overline{0, 2m}$, $(\tilde{u}(t)$ is the function in Lemma 1) such that

$$P'(t)u = \tilde{w}(t) \text{ for almost all } t \tag{12}$$

in the space $W_2^{2m+1}(\Omega)$ provided that

$$\gamma_j \tilde{u}'(t) \in W_2^{2m-j+1/2}(S) \ \forall j \in J_m^-$$

$$\tag{13}$$

in the data (11) for all $u \in W_2^{2m+1}(\Omega)$.

Proof. In the boundary data (9), for almost all t, we pass to weak limits in the quotient $\tau^{-1}(\tilde{u}(t+\tau)-\tilde{u}(t))$ in the spaces $W_2^{2m-j+1/2}(S)$, $j = \overline{0,2m}$, as $\tau \to 0$ and use the weak differentiability of the coefficients $a_{i,j}(t)$ with respect to t in $\mathfrak{L}(W_2^{2m-i+1/2}(S))$, $i \in J_{-m}$, $j \in J_m$; then we obtain the boundary values (11), which are taken by the continuation mapping γ^{-1} to a unique function $\tilde{w}(t) \in \mathcal{W}_2^{2m+1}(\Omega)$. Since the isomorphism γ^{-1} takes weak convergent sequences in $\prod_{j=0}^{2m} W_2^{2m-j+1/2}(S)$ to weak convergent sequences in $\mathcal{W}_2^{2m+1}(\Omega)$ and vice versa, we have $P'(t)u = \tilde{w}(t)$ in $W_2^{2m+1}(\Omega)$ for almost t. The proof of this lemma and hence property (i) of the projections P(t) are complete.

By using Lemmas 1 and 2 one can prove the following assertion.

Theorem 5. Let the coefficients $D_x^{\beta} a_{\alpha} \in C([0,T] \times \Omega)$, $|\beta| \leq |\alpha|$, have the derivative $\partial a_{\alpha}/\partial t \in L_{\infty}(]0, T[\times\Omega)$, $|\alpha| \leq 2m + 1$, for almost all t, let the differential expressions $\widetilde{A}(t)$ with

the boundary conditions (8) satisfy properties I_1 in Theorem 4, and let the differential operator $\widetilde{A}_0(t) = \widetilde{A}(t) + c_0 I$ be coercive on D(A(t)) in $W_2^{2m+1}(\Omega)$ (i.e., the inequality

$$\|u(t)\|_{2m+1,\Omega} \leq c_6 \|\tilde{A}_0(t)u(t)\|_{0,\Omega} \quad \forall \ u(t) \in D(A(t))$$
(14)

is valid for all $t \in [0, T]$, where $c_6 > 0$ is a constant independent of u and t). Let their conjugates in $L_2(\Omega)$ be given by some differential expressions

$$\widetilde{A}^*(t) = \sum_{|\alpha| \le 2m+1} a^*_{\alpha}(t, x) D^{\alpha}_x, \quad \widetilde{A}^*_0(t) = \widetilde{A}^*(t) + c_0 I,$$

with coefficients $D_x^{\beta} a_{\alpha}^* \in C([0,T] \times \Omega)$, $\partial a_{\alpha}^* / \partial t \in L_{\infty}(]0, T[\times \Omega)$, $|\beta| \leq |\alpha| \leq 2m+1$, and some boundary conditions $\{\Gamma_j^*(t)\}_{J_{2m+1}^*}$ satisfying the inequalities

$$\|(\partial \widetilde{A}^*(t)/\partial t)v(t)\|_{0,\Omega} \leq c_7 \|\widetilde{A}^*_0(t)v(t)\|_{0,\Omega} \quad \forall \ v(t) \in D(A^*(t)),$$
(15)

where $c_7 \ge 0$ is a constant independent of v and t. If all coefficients $a_{i,j}(t)$ are strongly continuous with respect to t in $\mathfrak{L}(W_2^{2m-i+1/2}(S))$ and have weak derivatives $a'_{i,j}(t)\in L_{\infty}(]0,T[, \mathfrak{L}(W_2^{2m-i+1/2}(S)))$ with respect to t in $W_2^{2m-i+1/2}(S), i\in J_{-m}, j\in J_m^-$, for almost all t such that

$$\begin{cases} \|a'_{i,j}(t)\gamma_i u\|_{0,S} \leq c'_{i,j}[u]_{(t)} \quad \forall \ u \in D(A(t)), \ i \in J_{-m}, \ j \in J_m, \\ \|a'_{i,j}(t)\gamma_i u\|_{0,S_k^-} \leq c^{(k)}_{i,j}[u]_{(t)} \quad \forall \ u \in D(A(t)), \ i \in J_{-m}, \ j \in J_m^-, \ k = \overline{1,n}, \end{cases}$$
(16)

where $c'_{i,j}$, $c^{(k)}_{i,j} \ge 0$ are constants independent of u and t, and continuation conditions (10) and (13) are valid, then the projections $P(t) : W_2^{2m+1}(\Omega) \to D(A(t))$ satisfy property II_1 in Theorem 4.

Proof. 1. Property (i) of the projections P(t) follows from Lemmas 1 and 2.

2. If the differential operators A(t) satisfy Condition I_1 , then there exist their bounded inverse operators $A_0^{-1}(t)$ on $L_2(\Omega)$ and $u(t) = A_0^{-1}(t)g \in D(A(t))$ for arbitrary $g \in L_2(\Omega)$. Suppose that for an arbitrary given value $t_0 \in [0, T]$ some sequence $t_p \to t_0$ converges to t_0 as $p \to \infty$. By virtue of the inequality $||u(t)||_{2m+1,\Omega} \leq c_6 ||g||_{0,\Omega}$, which follows from (14), one can single out a subsequence $t_l \to t_0$ such that $u(t_l) \to w_0$ weakly in $W_2^{2m+1}(\Omega)$ as $l \to \infty$. By passing to weak limits in the boundary operators $\Gamma_j(t_l)u(t_l) = 0$ in $W_2^{2m-j+1/2}(S)$, $j \in J_m$, and $\Gamma_{j,k}(t_l)u(t_l) = 0$ in $W_2^{2m-j+1/2}(S_k^-)$, $j \in J_m^-$, $k = \overline{1,n}$, as $l \to \infty$ and by using the strong continuity of their coefficients $a_{i,j}(t)$ with respect to t in $W_2^{2m-j+1/2}(S)$, $i \in J_{-m}$, $j \in J_m$, we obtain $\Gamma_j(t_0)w_0 =$ $0, j \in J_m$, and $\Gamma_{j,k}(t_0)w_0 = 0$, $j \in J_m^-$, $k = \overline{1,n}$, i.e., $w_0 \in D(A(t_0))$. Therefore, there exists a function $g_0 \in L_2(\Omega)$ such that $A_0(t_0)w_0 = g_0$. Since the coefficients a_{α}^* of the differential operators $\widetilde{A}^*(t)$ are continuous with respect to t for each $v \in W_2^{2m+1}(\Omega)$, we trove $||\widetilde{A}_0^*(t_l)v - \widetilde{A}_0^*(t_0)v||_{0,\Omega} \to 0$ as $l \to \infty$. So the right-hand sides of the relations

$$(v, g - g_0)_{0,\Omega} = ([\widetilde{A}_0^*(t_l) - \widetilde{A}_0^*(t_0)]v, u(t_l))_{0,\Omega} + (\widetilde{A}_0^*(t_0)v, u(t_l) - w_0)_{0,\Omega}$$

tend to zero as $l \to \infty$ for all $v \in \overset{\circ}{W}_{2}^{2m+1}(\Omega)$. The symbols $(\cdot, \cdot)_{p,\Omega}$ stand for the inner products in the Sobolev space $W_{2}^{p}(\Omega)$. By virtue of density of the set $\overset{\circ}{W}_{2}^{2m}(\Omega)$ in $L_{2}(\Omega)$, we have $g_{0} = g$ in $L_{2}(\Omega)$, and therefore, $w_{0} = A_{0}^{-1}(t)g = u(t_{0})$, i.e., the sequence $u(t_{l}) \to u(t_{0})$ weakly in $W_{2}^{2m+1}(\Omega)$ as $l \to \infty$. Since the sequence t_{p} is arbitrary, it follows that $u(t) = A_{0}^{-1}(t)g$ is weakly continuous functions with respect to t on [0, T] in the Sobolev space $W_{2}^{2m+1}(\Omega)$. Let us show that the functions $u(t) = A_0^{-1}(t)g$ are strongly continuous with respect to t in the space $W_2^{2m+1}(\Omega)$. By virtue of the inequalities

$$\|u(t) - u(t_0)\|_{2m+1,\Omega} \leq c_6 \|\tilde{A}_0(t)[u(t) - u(t_0)]\|_{0,\Omega},$$

to this end it suffices to show that their right-hand sides tend to zero as $t \to t_0$. Obviously, $\|\widetilde{A}_0(t)u - \widetilde{A}_0(t_0)u\|_{0,\Omega} \to 0$ for each $u \in W_2^{2m+1}(\Omega)$ as $t \to t_0$, since the coefficients a_α of the differential operators $\widetilde{A}(t)$ are continuous with respect to t and hence $\|\widetilde{A}_0(t)u\|_{0,\Omega} \to \|\widetilde{A}_0(t_0)u\|_{0,\Omega}$ as $t \to t_0$. Therefore, the squared norms

$$\|\widetilde{A}_{0}(t)u(t) - \widetilde{A}_{0}(t)u(t_{0})\|_{0,\Omega}^{2} = \|g\|_{0,\Omega}^{2} - 2Re(g,\widetilde{A}_{0}(t)u(t_{0}))_{0,\Omega} + \|\widetilde{A}_{0}(t)u(t_{0})\|_{0,\Omega}^{2}$$

tend to zero as $t \to t_0$ for $u(t) = A_0^{-1}(t)g$.

Now, by using Lemma 2, we prove the weak differentiability of $u(t) = A_0^{-1}(t)g$ with respect to t.

Lemma 3. Let the assumptions of Theorem 5 [without inequalities (15) u (16)] be valid. Then for the function $u(t) = A_0^{-1}(t)g$ the convergence

$$\tau^{-1}P(t+\tau)(u(t+\tau)-u(t)) \to w(t) \quad weakly \ in \quad W_2^{2m+1}(\Omega) \quad as \quad \tau \to 0,$$

is valid for each $g \in L_2(\Omega)$ and for almost all t, and there exists a unique function $\widetilde{w}(t) \in \mathcal{W}_2^{2m+1}(\Omega)$ with the boundary values (11) for u = u(t) such that

$$u'(t) = -A_0^{-1}(t)(\partial \widetilde{A}(t)/\partial t)u(t) - A_0^{-1}(t)\widetilde{A}_0(t)\widetilde{w}(t) + \widetilde{w}(t),$$
(17)

$$P(t)u'(t) = -A_0^{-1}(t)(\partial \widetilde{A}(t)/\partial t)u(t) - A_0^{-1}(t)\widetilde{A}_0(t)\widetilde{w}(t)$$
(18)

for almost all t.

Proof. The functions $u(t) \in D(A(t))$ and $v \in W_2^{2m+1}(\Omega)$ satisfy the identities

$$\tau^{-1}(P(t+\tau)[u(t+\tau)-u(t)],v)_{2m+1,\Omega} = \tau^{-1}([P(t+\tau)-P(t)]u(t+\tau),v)_{2m+1,\Omega} - \tau^{-1}([P(t+\tau)-P(t)]u(t),v)_{2m+1,\Omega} + \tau^{-1}(P(t)[u(t+\tau)-u(t)],v)_{2m+1,\Omega}$$
(19)

for each $t \in [0, T]$. Since the self-adjoint operators P(t) are weakly differentiable with respect to t for almost all t and the functions $u(t) = A_0^{-1}(t)g$ is strongly continuous with respect to t on [0, T] in $W_2^{2m+1}(\Omega)$, we have

$$\tau^{-1}([P(t+\tau) - P(t)]u(t+\tau), v)_{2m+1,\Omega} =$$

= $\tau^{-1}(u(t+\tau), [P(t+\tau) - P(t)]v)_{2m+1,\Omega} \to (u(t), P'(t)v)_{2m+1,\Omega}$

for the first term on the right-hand side in (19) as $\tau \to 0$ for almost all t. By Lemma 2, the her second term has the limit

$$\tau^{-1}([P(t+\tau) - P(t)]u(t), v)_{2m+1,\Omega} \to (P'(t)u(t), v)_{2m+1,\Omega}$$

as $\tau \to 0$ for almost all t. To compute the limit of the third term on the right-hand side in (19), we need the following assertion.

Lemma 4. [1, p. 144]. Let the assumptions of Lemma 3 be satisfied, and let P(t): $W_2^{2m+1}(\Omega) \to D(A(t))$ be orthogonal projection operators. Then for each $u, v \in W_2^{2m+1}(\Omega)$, there exist functions $w_{\tau}(t)$ [respectively, $v_{\tau}(t)$] in $W_2^{2m+1}(\Omega)$ such that

$$P(t+\tau)u - w_{\tau}(t) \in D(A(t)) \quad [respectively, \ P(t)v - v_{\tau}(t) \in D(A(t+\tau))]$$

and

$$\tau^{-1}w_{\tau}(t) \to w'(t) \quad [respectively, \ \tau^{-1}v_{\tau}(t) \to v'(t)] \ weakly \ in \ W_2^{2m+1}(\Omega) \ as \ \tau \to 0$$

for almost all t.

Proof. To prove the parenthesized assertions, we supplement the boundary conditions

$$\gamma_{j}v_{\tau}(t) - \sum_{i\in J_{-m}}^{i

$$\gamma_{j}v_{\tau}(t) - \sum_{i\in J_{-m}}^{i

$$k = \overline{1, n},$$$$$$

with the boundary conditions

$$\gamma_j v_\tau(t) = 0, \ j \notin J_m \cup J_m^-, \ on \ S; \ \gamma_j v_\tau(t) = 0, \ j \in J_m^-, \ on \ S_k^+, \ k = \overline{1, n}.$$

By using the mapping γ^{-1} , on the basis of the resulting boundary values $\gamma_j v_\tau(t)$, $j = \overline{0, 2m}$, we find functions $v_\tau(t) \in \mathcal{W}_2^{2m+1}(\Omega)$ such that $v(t) - v_\tau(t) \in D(A(t+\tau))$ for all small τ . By passing in $\tau^{-1}v_\tau(t)$ to weak limit in $W_2^{2m+1}(\Omega)$ as $\tau \to 0$, with the use of (20), (21) we trove the boundary values

$$\gamma_{j}v'(t) = -\sum_{i \in J_{-m}}^{i < j} a'_{i,j}(t)\gamma_{i}v(t), \quad j \in J_{m}, \text{ on } S,$$

$$\gamma_{j}v'(t) = -\sum_{i \in J_{-m}}^{i < j} a'_{i,j}(t)\gamma_{i}v(t), \quad j \in J_{m}^{-}, \text{ on } S_{k}^{-}, \ k = \overline{i, n},$$

$$\gamma_{j}v'(t) = 0, \ j \notin J_{m} \cup J_{m}^{-}, \text{ on } S; \ \gamma_{j}v'(t) = 0, \ j \in J_{m}^{-}, \text{ on } S_{k}^{+}, \ k = \overline{1, n},$$

which, in view of the continuation mapping γ^{-1} , corresponds to some function $v'(t) \in \mathcal{W}_2^{2m+1}(\Omega)$. The proof of the second assertion of Lemma 4 is complete. The first assertion can be proved in a similar way. The proof of Lemma 4 is complete.

Thus, by virtue of the second assertion of Lemma 4 and the main properties of the projections P(t), we have

$$\begin{aligned} (u(t+\tau) - u(t), \ P(t)v)_{2m+1,\Omega} &= (P(t+\tau)u, \ P(t)v - v_{\tau}(t))_{2m+1,\Omega} + \\ + (P(t+\tau)u, v_{\tau}(t))_{2m+1,\Omega} - (u, \ P(t)v)_{2m+1,\Omega} &= (u, \ P(t)v - v_{\tau}(t))_{2m+1,\Omega} + \\ + (P(t+\tau)u, \ v_{\tau}(t))_{2m+1,\Omega} - (u, \ P(t)v)_{2m+1,\Omega} &= (P(t+\tau)u - u, \ v_{\tau}(t))_{2m+1,\Omega}. \end{aligned}$$

Hence it follows that

$$\tau^{-1}(P(t)[u(t+\tau) - u(t)], v)_{2m+1,\Omega} \to (P(t)u - u, v'(t))_{2m+1,\Omega} \text{ as } \tau \to 0$$

for almost all t and for each $v \in W_2^{2m+1}(\Omega)$.

As a result, by summing the resulting limits for the terms occurring on the right-hand side in identity (19), we obtain

$$\tau^{-1}(P(t+\tau)[u(t+\tau) - u(t), v])_{2m,\Omega} \to (P(t)u - u, v'(t))_{2m,\Omega} \text{ as } \tau \to 0$$

for each $v \in W_2^{2m+1}(\Omega)$ and for almost t. Hence the functions $u(t) = A_0^{-1}(t)g$ for all $g \in L_2(\Omega)$ have the weak derivative u'(t) with respect to t in $W_2^{2m+1}(\Omega)$ for almost all t. The prove of property (ii) of the projections P(t) is complete.

Let us compute this weak derivative. The computation of weak derivatives with respect to t in the equation $\tilde{A}_0(t)u(t) = g$ in the space $W_2^{2m+1}(\Omega)$ and in the boundary data (11) in the spaces $W_2^{2m-j+1/2}(S)$, $j = \overline{0, 2m}$, necessitates considering the boundary value problems

$$\tilde{A}_0(t)u'(t) = -(\partial \tilde{A}(t)/\partial t)u(t), \quad x \in \Omega,$$

$$\Gamma_j(t)u'(t) = \sum_{i \in J_{-m}}^{i < j} a'_{i,j}(t)\gamma_i u(t), \quad j \in J_m, \text{ on } S,$$

$$\Gamma_{j,k}(t)u'(t) = \sum_{i \in J_{-m}}^{i < j} a'_{i,j}(t)\gamma_i u(t), \quad j \in J_m^-, \text{ on } S_k^-, \ k = \overline{1, n},$$

for almost all t. As was shown above, for almost all t the boundary data (11) for the function u = u(t) corresponds to the function $\widetilde{w}(t) \in \mathcal{W}_2^{2m+1}(\Omega)$. Then the function $w(t) = u'(t) - \widetilde{w}(t)$ is a solution of the boundary value problems

$$A_0(t)w(t) = -(\partial A(t)/\partial t)u(t) - A_0(t)\widetilde{w}(t), \quad x \in \Omega,$$

$$\Gamma_j(t)w(t) = 0, \ j \in J_m, \ on \ S; \ \Gamma_{j,k}(t)w(t) = 0, \ j \in J_m^-, \ on \ S_k^-, \ k = \overline{1, n_k}$$

for almost all t; consequently,

$$w(t) = -A_0^{-1}(t)(\partial \widetilde{A}(t)/\partial t)u(t) - A_0^{-1}(t)\widetilde{A}_0(t)\widetilde{w}(t)$$

for almost all t, and the derivative u'(t) can be expressed by formula (17).

For almost all t and for all $v(t) \in D(A(t))$, the squared distance $||u'(t) - v(t)||_{2m+1,\Omega}^2$ is equivalent to

$$\begin{split} \sum_{j=0}^{2m} \|\gamma_j(u'(t) - v(t))\|_{2m-j+1/2,S}^2 &= \sum_{j\in J_m} \|\gamma_j(u'(t) - w(t)) + \\ &+ \sum_{i\in J_{-m}}^{i$$

whose minimum, by force of the boundary data (11) for u = u(t), is obviously attained for v(t) = w(t). It follows that P(t)u'(t) = w(t) in $W_2^{2m+1}(\Omega)$ for almost all t. Therefore, the relation (18) is valid for almost all t. The proof of Lemma 3 is complete.

3. Thus, by passing to the conjugate in $L_2(\Omega)$ and by using formula (17), we have the relations

$$(u'(t),h)_{0,\Omega} = -(u(t), (\partial \widetilde{A}^*(t)/\partial t)A_0^{*-1}(t)h)_{0,\Omega} - (A_0^{-1}(t)\widetilde{A}_0(t)\widetilde{w}(t) - \widetilde{w}(t), h)_{0,\Omega}$$
(22)

for almost all t and for all $h \in L_2(\Omega)$. For the first term on the right-hand side in this relation, the desired estimates (7) follow from the boundedness of the the operators

 $(\partial \widetilde{A}^*(t)/\partial t)A_0^{*-1}(t) \in L_{\infty}(]0, T[, \mathfrak{L}(H))$ by virtue of inequalities (15). The use of Greens's formula for integration by parts to the inequality

$$\|A_0^{-1}(t)\widetilde{A}_0(t)v\|_{0,\Omega}^2 \leq c_8(\|v\|_{0,\Omega}^2 + \sum_{j=0}^{2m} \|\gamma_j v\|_{0,S}^2) \quad \forall \ v \in W_2^{2m+1}(\Omega),$$
(23)

where $c_8 \ge 1$ is a constant independent of v and t. The conjugate of the isometry [4, pp 20–56]

$$\gamma: \mathcal{W}_2^{2m+1}(\Omega) \to \prod_{j=0}^{2m} W_2^{2m-j+1/2}(S)$$

is given by the isometry

$$\gamma^* : \prod_{j=0}^{2m} W_2^{-(2m-j+1/2)}(S) \to \mathcal{W}_2^{-2m-1}(\Omega)$$

of the antidual spaces $\prod_{j=0}^{2m} W_2^{-(2m-j+1/2)}(S)$ and $W_2^{-2m-1}\Omega$) onto the spaces $\prod_{j=0}^{2m} W_2^{2m-j+1/2}(S)$ and $W_2^{2m+1}(\Omega)$, respectively. The restriction of the mapping γ^* to $\prod_{j=0}^{2m} W_2^{2m-j+1/2}(S)$ is the mapping γ^{-1} . By applying the main interpolation theorem [5, p. 41] to the operator

$$\gamma^* \in \mathfrak{L}\Big(\prod_{j=0}^{2m} W_2^{2m-j+1/2}(S), \mathcal{W}_2^{2m+1}(\Omega)\Big) \bigcap \mathfrak{L}\Big(\prod_{j=0}^{2m} W_2^{-(2m-j+1/2)}(S), \mathcal{W}_2^{-2m-1}(\Omega)\Big)$$

with respect to the parameter $\theta \in]0, 1[$, we obtain the inclusion $\gamma^* \in \mathfrak{L}\left(\prod_{j=0}^{2m} W_2^{-j+1/2}(S), L_2(\Omega)\right)$, for $\theta = 1/2$, i.e.,

$$\|v\|_{0,\Omega}^2 \leq c_9 \sum_{j=0}^{2m} \|\gamma_j v\|_{-j+1/2,S}^2 \quad \forall \ v \in W_2^{2m+1}(\Omega)^2,$$
(24)

where $c_9 > 0$ is a constant independent of v and t. Then the desired estimates (7) for the second term in (22) follow from inequalities (23), (24) and (16) by virtue of the boundary data (11) for u = u(t). Property (*iii*) of the projections P(t) is valid. The proof of the theorem is compete.

Remark 4. Theorem 5 generalizes Theorem 6.1 in [1, p. 142] for self-adjoint leading parts $A_1(t)$ of the operator coefficient A(t) to the case of nonsymmetric operators $A_1(t)$ of accretive operators A(t).

6. Applications. Let us apply the abstract obtained results to the investigation of wellposed solvability of new class of mixed problems for odd-order linear partial differential equations with time-dependent boundary conditions, which has not been researched by anybody yet.

In the cylinder $G =]0, T[\times \Omega \text{ of the variables } t \text{ and } x = (x_1, ..., x_n)$, where $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary $S \in C^{\infty}$, we investigate the nonclassical equations

$$\partial u(t,x)/\partial t + \sum_{|\alpha| \le 2m+1} a_{\alpha}(t,x) D_x^{\alpha} u(t,x) = f(t,x), \quad m = 0, \ 1, \dots,$$
(25)

with the boundary conditions (8) on S for $t \in [0, T]$ and the initial condition

$$u(0,x) = u_0(x), \quad x \in \Omega.$$
 (26)

Let the differential operators $\widetilde{A}(t) = \sum_{|\alpha| \le 2m+1} a_{\alpha}(t, x) D_x^{\alpha}$ with the boundary conditions (8) satisfy the following conditions.

 $I_3. \text{ The coefficients } a_{\alpha} \text{ of the equations (25) satisfy inclusion } D_x^{\beta} a_{\alpha} \in C(\Omega), \ |\beta| \leq |\alpha| \leq 2m + 1, \text{ for each } t \in [0, T], \text{ the differential operators } \widetilde{A}(t) \text{ are lower semibounded in } L_2(\Omega) \text{ on } W_2^{2m+1}(\Omega; \ \{\Gamma_j(t)\}_{J_m \cup J_m^-}) = \{u(t) \in W_2^{2m+1}(\Omega) : u(t) \in (8)\} \text{ and their conjugates in } L_2(\Omega) \text{ on } W_2^{2m+1}(\Omega; \ \{\Gamma_j(t)\}_{J_m \cup J_m^-}) \text{ are given by some differential operators } \widetilde{A}^*(t) = \sum_{|\alpha| \leq 2m+1} a_{\alpha}^*(t, x) D_x^{\alpha}$

with some adjoint boundary conditions $\{\Gamma_j^*(t)\}_{J_m^*}$.

The coefficients a_{α}^* of their conjugates satisfy inclusion $D_x^{\beta}a_{\alpha}^* \in C(\Omega)$, $|\beta| \leq |\alpha| \leq 2m + 1$, for each $t \in [0, T]$, the differential operators $\widetilde{A}^*(t)$ are also lower semibounded in $L_2(\Omega)$ on $W_2^{2m+1}(\Omega; \{\Gamma_j(t)\}_{J_m \cup J_m^-}) = \{u(t) \in W_2^{2m+1}(\Omega) : u(t) \in (\Gamma_j^*(t)\}_{J_m^*})\}.$

 II_3 . All coefficients a_{α} belong to C(G), and their derivative $\partial a_{\alpha}/\partial t$ belongs to $L_{\infty}(G)$. The operators $\widetilde{A}_0(t) = \widetilde{A}(t) + c_0 I$ are coercive on $W_2^{2m+1}(\Omega; \{\Gamma_j(t)\}_{J_m \cup J_m^-})$ in $L_2(\Omega)$ for some $c_0 > 0$ and for any $t \in [0, T]$; i.e.,

$$\|u\|_{2m+1,\Omega} \leq c_{10} \|\widetilde{A}_0(t)u\|_{0,\Omega} \quad \forall \quad u \in W_2^{2m+1}(\Omega; \ \{\Gamma_j(t)\}_{J_m \cup J_m^-}),$$

where $c_{10} > 0$ is a constant independent of u and t. All coefficients a^*_{α} belong to C(G), their derivative $\partial a^*_{\alpha}/\partial t$ belongs to $L_{\infty}(G)$, and

$$\|(\partial \widetilde{A}^{*}(t)/\partial t)v\|_{0,\Omega} \leq c_{11}\|\widetilde{A}^{*}_{0}(t)v\|_{0,\Omega} \quad \forall \ v \in W_{2}^{2m+1}(\Omega; \ \{\Gamma^{*}_{j}(t)\}_{J^{*}_{m}}),$$
(27)

where $c_{11} \ge 0$ is a constant independent of v and t. All coefficients $a_{i,j}(t)$ of boundary conditions belong to C[0, T], their derivative $\partial a_{i,j}(t)/\partial t$ belongs to $L_{\infty}(0, T)$, they satisfy inequality (16), and functions admit the continuations (10) and (13) from S_k^- to the entire set $\overline{\Omega}$.

Since Conditions $I_3 - II_3$ provide the validity of properties $I_1 - II_1$ in $V = W_2^{2m+1}(\Omega)$ and, therefore, of Conditions I - II in $H = L_2(\Omega)$, from Theorems 1, 3–5, we obtain the following assertion.

Theorem 6. If Conditions $I_3 - II_3$ are satisfied, then for arbitrary functions $f \in L_2(]0, T[, W_2^{-m}(\Omega; \{\Gamma_j^*(t)\}_{J_m^*}))$ and $u_0 \in L_2(\Omega)$, there exist unique weak solutions $u \in L_2(G)$ of the mixed problems (25), (8), (26).

Here $W_2^{-m}(\Omega; \{\Gamma_j^*(t)\}_{J_m^*})$ are the antiduel spaces of the Hilbert spaces $W_2^m(\Omega; \{\Gamma_j^*(t)\}_{J_m^*})$, which are obtained by the closure of the sets $W_2^{2m+1}(\Omega; \{\Gamma_j^*(t)\}_{J_m^*})$ in Hermitian norms $\langle \cdot \rangle_{(t)}, t \in [0, T]$, corresponding to the formula (4).

For example, the Conditions $I_3 - II_3$ are satisfied for the following mixed problem for the linearized Korteweg-de Vries equation:

$$\frac{\partial u}{\partial t} - a(t)\frac{\partial^3 u}{\partial x^3} = f(t, x), \quad 0 < t < T, \quad 0 < x < l,$$
(28)

$$\frac{\partial^2 u(t,0)}{\partial x^2} = a_1(t)u(t,0), \quad \frac{\partial^2 u(t,l)}{\partial x^2} = -a_2(t)u(t,l), \quad \frac{\partial u(t,0)}{\partial x} = 0, \quad 0 \le t \le T,$$
(29)

$$u(0, x) = u_0(x), \quad 0 < x < l, \tag{30}$$

where $a \in C[0,T]$ is a strictly positive coefficients, $\partial a / \partial t \in L_{\infty}(0,T)$, $a_i(t) \in C[0,T]$ are nonnegative coefficients, $\partial a_i / \partial t \in L_{\infty}(0,T)$, i = 1, 2, and

if
$$\exists t_0 \in [0,T]$$
, such that $a_1(t_0) = 0$ (respectively, $a_2(t_0) = 0$),
then $a_1 \equiv 0$ (respectively, $a_2 \equiv 0$). (31)

1). The differential operators $-\widetilde{A}(t) = a(t)\partial^3/\partial x^3$ with the boundary conditions (29) are dissipative in $L_2(0,l)$. Their conjugates in $L_2(0,l)$ are given by the differential expressions $-\widetilde{A}^*(t) = -a(t)\partial^3/\partial x^3$ with the boundary conditions

$$\frac{\partial^2 v(t,0)}{\partial x^2} = -a_1(t)v(t,0), \quad \frac{\partial^2 v(t,l)}{\partial x^2} = a_2(t)v(t,l), \quad \frac{\partial v(t,l)}{\partial x} = 0, \quad 0 \le t \le T,$$
(32)

which are also dissipative in $L_2(0, l)$.

2). The operators $\widetilde{A}_0(t) = \widetilde{A}(t) + I$ are obviously coercive on $W_2^3(\Omega; \{\Gamma_j(t)\}_{J_1 \cup J_1^-})$ in $L_2(\Omega)$ for $c_0 = 1$ and for any $t \in [0, T]$. Here we note that the squared norm $\|\widetilde{A}_0(t)w\|_{0,\Omega}^2$ is equal to

$$\|\widetilde{A}_{0}(t)w\|_{0,\Omega}^{2} = 2a(t)a_{1}(t)|w(0)|^{2} + 2a(t)a_{2}(t)|w(l)|^{2} + a(t)|\partial w(l)/\partial x|^{2} + a^{2}(t)\|\partial^{3}w/\partial x^{3}\|_{0,\Omega}^{2} + \|w\|_{0,\Omega}^{2}, \ \Omega =]0, l[.$$

The inequality (27) for m = 1 is also true. By virtue of condition (31), we have the inequality (16) in the Theorem 5, where the squared norm $[\cdot]_{(t)}^2$ is equal to

$$\sqrt{Re(\widetilde{A}_0(t)u, u)_{0,\Omega}} = (a(t)a_1(t)|u(0)|^2 + +a(t)a_2(t)|u(l)|^2 + (a(t)/2)|\partial u(l)/\partial x|^2 + ||u||_{0,\Omega}^2)^{1/2}}.$$

The Conditions (10) and (13) on the continuation of functions from the boundary on the entire domain are obviously valid for a segment [5]. The verification of conditions $I_3 - III_3$ is finished. Therefore, Theorem 6 implies the following assertion.

Theorem 7. If $0 < a_0 \leq a(t)$, $a_1(t) \geq 0$, $a_2(t) \geq 0$, $a(t) \in C[0,T]$, $\partial a(t)/\partial t \in L_{\infty}(0,T)$, $a_i \in C[0,T]$, $\partial a_i/\partial t \in L_{\infty}(0,T)$, i = 1, 2, and condition (31) is true, then for each functions $f \in L_2(]0, T[, W_2^{-1}(]0, l[; (32)_t))$ and $u_0 \in L_2(0, l)$ there exists a unique weak solution $u \in L_2(]0, T[\times]0, l[)$ of the mixed problem (28)–(30).

Here $W_2^{-1}(]0, l[; (32)_t)$ – are the antidual spaces of the Hilbert spaces $W_2^1(]0, l[; (32)_t)$, which are obtained by the closure of the set of all functions $u(t) \in W_2^3(0, l)$ satisfying the boundary conditions (32) in the norms $\langle \cdot \rangle_{(t)}$ which is equal to

1. Lions J.-L. Equations différentielles opérationnelles et problèmes aux limites. Verlag, Berlin, 1961.

2. Krein S.G. Linear Differential Equations in Banach Space , Nauka, Moscow, 1967 (in Russian).

3. Yosida K. Functional analysis. Moscow, 1977 (in Russian).

4. Ломовцев Ф.Е. // Материалы Воронежской зимней матем. школы "Современные методы теории функций и смежные проблемы" (Воронеж, январь-февраль 2003 г.). Воронеж, 2003. С. 144–145.

5. Лионс Ж.-Л., Мадженес Э. Неоднородные граничные задачи и их приложения. М., 1971.

6. Nikol'skii S.M., Approximation of Functions of Many Variables and Embedding Theorems , Moscow, 1977 (in Russian).