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AnHOTaUSI

In the present paper three well-known Theorems of correct solvability in [1, p. 129,
138, 142] are generalized to evolution operator-differential equation with time-variable
domains of accretive operators and to new class of the mixed problems for odd-order
partial differential equations with time-dependent boundary conditions of general form.
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1. Statement of the Cauchy problem. In a Hilbert space H with inner product (-, )

and norm | - |, on consider the Cauchy problem for operator-differential equation
du

with the initial condition
U(O) = Ug € H, (2)

where u and f are functions of ¢ ranging in H, and A(t) are linear unbounded closed operators
in H with t-depending domains D(A(t)), t€[0,T].

One assume that the operators A(t) satisfy the following conditions.

I. The operators A(t) and their conjugates A*(t) in H with ¢-depending domains D(A*(t))
for all te [0, 7] satisfy the inequalities

[u]?t) = Re(A(t)u + cou,u) > cilul* YV ueD(A(t)), (3)

<U>?t) = Re(A*(t)v + cov,v) > ci|v|* ¥V veD(A*(1)), (4)

where ¢g>0 and ¢; > 0 are constants independent of u, v and t.

II. The inverses Ay'(t) of the operators Ag(t) = A(t) + coI in H are strongly continuous
with respect to t€ [0,T] in H, |2, p. 22| and for almost all t€]0, T'[ they have a weak derivative
dAg'(t)/dte€ Lo (]0, T, £(H)), with respect to t€ [0, T] in H [3, p. 172], such that

(dAG () /dt)g. )| < e[ AT (®)glwlhl ¥ g, hed, ()

where ¢3>0 is a constant independent of g, h and ¢.

First, we introduce needing spaces for the considered Cauchy problem. Let H;™ be the
antidual Hilbert spaces of the Hilbert spaces H; ", which are obtained as the closure of the sets
D(A*(t)) in the Hermitian norms (-),), t€ [0,7], in (4). Throughout the sequel, all considered



abstract functions and operator-valued functions of the variable ¢ are supposed to be strongly
measurable in the Lebesgue measure dt on [0,7] in H. We denote the Hilbert spaces H =
Ly(]0,T[, H) and H*™ = Lo(]0, T, H; 7).

Second, we define weak solutions of he considered Cauchy problem.

Definition 1. A function u€H is called a weak solution of the Cauchy problem (1) — (2)
for right-hand sides feH*~ of the equation (1) and uy€H of the initial condition (2), if

[ {2 @) - (w0, 57 bar - / (). 0(0)) gyt + (10, £(0)

forall pe® = {F € H: (t) € D(A*(t)) Vt€[0,T]; caaban npoussodnan dp/dt, A*(t)FeH;
¢(T) = 0}, where (-,-),) are the sesquilinear forms of antiduality between the Hilbert spaces
H;* and H;".

Let us prove existence and uniqueness theorems for weak solutions of the Cauchy problem
(1) = (2) in the sense of Definition 1 below and of new mixed problems for odd-order partial
differential equations with time-dependent boundary conditions in general form. We first prove
existence theorem for weak solutions of this Cauchy problem.

Remark 1. If the operators A(t) satisfy Condition I, then for each t€ [0, 7] the norms
[Ag (gl = (A5 (t)g) @ for all g € H, where Aj~'(t) are the inverse operators of Aj(t) =
A*(t) 4+ col.

2. Existence theorem. We formulate and prove the following existence theorem for weak
solutions.

Theorem 1. If Condition I is just, then for each fEH*™ and wug€H, there exists a weak
solution ueH of the Cauchy problem (1) — (2).

Proof. The proof use the following projection Lions’ theorem in [1, p. 37].

Teopema 2. Let F' be a Hilbert space with Hermitian norm ||-||r and let ® be a pre-Hilbert
space with Hermitian norm |||-||| and continuously embedded in F', i.e., there exists a constant
c3 > 0 such that

lellr < alllell] Vped.

Let E(w, ) be a given sesquilinear form on Fx® continuous with respect to w on F for
each ¢ € ®, and suppose that there exists a constant c4 > 0 such that

|E(e,0)] > alllell]* ¥V ped.

If the antilinear functional L(p) is continuous with respect to ¢ on ®, then there exists an
element weF such that E(w, ¢) = L(p) for all pe®.

On Hilbert space F ='H and pre-Hilbert space & = ® with the norm

lielll = ( [ (eide + 1eP) "

we take respectively the following sesquilinear form and antilinear functional

o= [ {wo, 2we) - (w0, G2) Jar



T

L) = [ (P (0t + (a0 0(0))

0

For each ¢ € ®, the form E (w, ) is obviously continuous with respect to w on F ="H
and, as integration by parts shows, |E(¢, )| > ReE(p, ¢) > (1/2)|||¢||]* for all o€ ®.
For any feH* and ug€ H, the functional L(yp) is obviously continuous with respect to ¢
on ®. Thus, by force of Theorem 2 for each f € H*™ and wg € H, there exists a solution w € H
of the equation E(w, ¢) = L(¢) Ve € ® and, therefore, a weak solution v = exp{2¢ot}w e H
of the Cauchy problem (1) — (2). The proof of this theorem is complete.

3. Uniqueness theorem. We formulate and prove the following uniqueness theorem for
weak solutions.

Theorem 3. If Conditions I-II are satisfied, then for each fEH*™ and ug€H the weak
solution u € H of the Cauchy problem (1) — (2) is unique.

Proof. If ueH is a weak solution of the Cauchy problem (1) — (2) for f =0 and uy =0,
then we have the identity

/{(U(t), A (t)p(t)) — <u(t), d‘g—;))}dt — 0 Vped.

We may prove that the operators Aj'(t) have a weak derivative
dAy () /dte Lo (0, T[, £(H)), with respect to t for almost all t€]0,7[ in H. By
setting ¢ = A% '(t)w, where w(t) = —ft “2esy(s)ds or u = e**(dw/dt) and w(T) =0,

and by extracting the real part, we obtaln the equahty

T

re [ { (G w) = (G0 + S a0 e = o

0

After integration by parts in the first inner product, we trove the equality

T T
1 2 2ct 2 2ct *—1 d_w 2
2|w(0)| + c/e lwl*dt + [ e <A0 (1) = >(t)dt—|—
0 0
[ onrd dAS (D)
2ct w *—1 37 3 _
+ Re /e <dt’ oAy (Hw + — g w)dt = 0. (6)

0

By estimating from below the left-hand side of equality (6) by means of (3), (5) and by using
Remark 1, we have the inequality

T T T

dw 2
C/€2Ct|w|2dt + /eQCt<A31(t)d—zf>()dt (cocy Y24 /62“ A* Y t> lw|dt <0,
¢

0 0 0



which, together with the well-known inequality, implies that

T

—-1/2
(C— (cocy /4+02)2> /62Ct|w|2dt <0.

0

Hence for ¢ > (000;1/2 +¢9)?/4, we obtain w = 0 and, therefore, v = 0 in H. The proof of the
theorem is complete.

Remark 2. Theorems 1 and 3 generalize Theorem 1.1 in [1, p. 129] for self-adjoint leading
parts A;(t) of the operator coefficient A(t) to the case of nonsymmetric operators A (t)
of accretive operators A(t). Under Conditions I-II all weak solutions of the Cauchy problem
(1) — (2) satisfy the a priori estimate

T

Jrutopae < 2( [+ ).

0
where <‘)(7t) are the norms in the Hilbert spaces H, ™, t € [0,T], [1, Remark 1.2, p. 38|.

4. Construction of the operators A (t). In a Hilbert space H we indicate one family
of operators  A(t) with variable domains D(A(t)) satisfying Conditions I-II. Let sets
D(A(t)),t € [0,T], be closed subspaces of some Hilbert space V  continuously embedded
in H. Let P(t), t€[0,T], be the orthogonal projections of the space V onto D(A(t)). We
assume the following conditions.

I,. The linear closed operators A(t) : H D D(A(t)) — H satisfy the inequality (3) and
their conjugates A*(t) : H D D(A*(t)) — H, t€[0, T}, satisfy the inequality (4).

I1,. The projection operators P(t): V — V| t€|0,T], have the following properties.

(¢) For each u€V, the function P(t)u is strongly continuous with respect to ¢t on [0,7] in V'
and

T Y P(t+7)— P(t))u — P'(t)u weaklyin V as 7—0

for almost all ¢.
(i3) For each g€ H, the functions u(t) = Ay'(t)g are strongly continuous with respect to t
on [0,7]in V, and

TP+ 1) (u(t+7) —u(t)) — P()u/'(t) weaklyin V as 7—0
for almost all ¢.

(i73) The weak derivative u'(t) = P'(t)u(t) + P(t)u'(t) taken in V satisfies the inequalities

WL < clu®lplhl ¥ u)eDAD), ¥ heH ™)
for almost all ¢, where c¢5>0 is a constant independent of wu, h and t.

Teopema 4. The operators — A(t) with properties Iy — 11y satisfy Conditions [ — I1
respectively.

Proof. It remains to justify inequality (5). If in the identities

T Hu(t+7) —u(t)) = 7Pt +7) — P(t)]u(t) + 7Pt + 7)[u(t + 7) — u(t)]



one passes to the weak limit in V' as 7 — 0, then, by using property I, one obtains
((dAG () /dt)g, h) = (u/(t), h) = (P'(t)u(t) + P(t)u'(t), h).

for almost all ¢ and for arbitrary h€H. The inequalities (7) are equivalent to the inequalities
(5). The proof of the theorem is complete.

Remark 3. Theorem 4 generalizes Theorem 5.1 in [1, p. 138]| for self-adjoint leading parts
Ay (t) of the operator coefficient A(t) to the case of nonsymmetric operators A;(t) of accretive
operators A(t). In the Theorem 5.1 the operators P(t) are projections not onto the domains

D(A(t)) asin Theorem 4 but actually onto the domains D(Ai/z(t)) of the square roots A}/Q(t).
Conditions I1 —11; generalize the corresponding Lions’ conditions. Unlike his conditions imposed
on the self-adjoint leading parts A;(¢), which are given by sesquilinear Hermitian forms, our
conditions I; — I, are stated for operators A(t) themselves and in purely operator form.

5. Examples of domains D (A (t)). Let us give one example of domains D(A(?)) satisfying
property Il in the Hilbert space H = Ly(Q2), where € is a bounded domain with smooth
boundary S € C* in the Euclidian space R™ of the real variables x = (x1, ..., z,,).

By [1, Th. 3.2, p. 17|, the values of the derivatives

yju=du/ov’ € ngfjﬂ/z(S), j=0,2m,

along the outward normal v of S are defined on S for each function u in the Sobolev space
V = W5mHHQ). If all coefficients a; ;(t) belong to the set B([0,T7, S(W;m_Hl/Q(S))), 1€
Jom, j € Jm, of functions bounded in the norm of linear continuous mappings in W, m—itl/ 2(9)
for each ¢ € [0, 7], then the boundary conditions

( i<j
1€ _m
_ N ) o (8)
Liru= ~yju(a) — ; a; j(t)viu(z') =0, 2'€S.,
i m

k=1n, jeJ., tel0,T], m=0,1,..,

\

are well defined, where the sets of indices are
Im = {Js€[0,....,2m] : s =1,q},
‘]r; = {jSE([O, 72m]\<]m) s=q+1,m+ 1},
Jom =1[0,....2m\(J, U J)

and S, — are the sets of all points 2’ of the boundary S with negative direction cosines of the
angles between the outward normal v to S and the axes Oxy, k = 1,n. We set

D(A®#)) = {u®)eW2™H Q) . u(t)e(8), At)u(t)eL,(Q)}, ¢ € [0,T],

where  A(t)= 3 ao(t,x) DY is a differential operator. Consider the operators
|| <2m+1

A(t) : Ly(Q) D D(A(t)) 3 u — A(t)u € Ly(Q), t € [0,T).



For each t€[0,T], the domains D(A(t)) are closed in the Sobolev space W™ (). Let a
sequence u,(t) € D(A(t)) converge to uy(t) in the norm of space W3 () as p — oc. Then, by
Theorem 3.2 in [1, p. 17|, the values of the boundary operators I';(¢)u,(t) = 0 and I'; 4 (¢) p(t
0 converge respectively to the boundary operators T';(t)ug(t) = 0 in Wy +1/ (8),j €
and Tz (H)ue(t) = 0in W™ 7TV2(S0), je Jo k=T n, as p— oo, i.c., ug(t) € D(A(1)).

The Sobolev space W5 () can be expanded in the direct sum W™ (Q) = m+1( )®

W3 HH(Q), where Wi™ () is the orthogonal subspace to the Sobolev space W 2’"H(Q) that
is, to the set of all functions u € W3 (Q) such that yjuls = 0, j = 0,2m. We define
the projection operators P(t) : W™ (Q) — D(A(t)) with use of the boundary operators
L;(t), j€Jm, and T'jx(t), j€J,,, k=1,n, in a way that differs from that in [1, p. 143] but
is equivalent and more general.

Definition 2. For the operators P(t) the projection of a function v € W™ (Q) are
defined by P(t)u = u(t), where u(t)e(8) and 1r(1£ llu —v(t)|lamt1,0 = [[u — w(?t)||2m+1,0, the

infimum being taken for all v(t)eD(A(t)), t € [0,T].

The following assertion describes the action of the projections P(t).

Lemma 1. Let the projection operators P(t) be defined on D(A(t)) in the space W3™ ().
For each function u€Wy™ (), there exists a unique function u(t)ED(A(t)) with boundary
values

) =
I

r 1<j
i) = > (B, j€Jm, on S,
1€ _m
() = v jEIm U S, on S,
(9)
1<j
i) = Y aii(O, j€,, on St
1€ _m
[ ji(t) = yu, jET,. on Sf=S5\S;, k=Tn

in W2 IYY2(8), j = 0,2m, such that P(tyu = a(t) in W2™N(Q) for all t€[0,T], provided
that
() € W TA(S) Vi e (10)

in the data (9) for all uwe W3 (Q).
Proof. By the above-mentioned Theorem 3.2, the restriction v = {7o,...,72m} is an

2m .
isomorphism of the Hilbert space W2™1(2) onto the product [] W;™ +/ ?(S) of the Hilbert
=0
spaces W3~ J+1/2(S). Owing to the mapping v, inverse to the restriction v = {70, ..., Yom },
for each ¢t € [0,7] and for the boundary conditions (9), there exists a unique function
a(t) € Wi™(Q). By construction, this function @(t) € D(A(t)). For all ¢ € [0,7] and

v(t) € D(A(t)), the squared distance [Ju — v(t)]|3,,, .o is equivalent to

1<j
Zuw—v Wam jirjos = > llgu— > awi(t)yut
Jj€EIm €J_m
1<J
+ ) ai O — o) 3 e+ > I — o) 31 jest
iEJ,m ng'f?LU‘]’I:L



1<j 1<j

+Z Z [[yju — Z a;,j(t)viu + Z a;,j(t)yi(u — /U(t>>H§m_j+1/27skf+

k=1 ]GJ';L iEJ—m ieJ—m
n
2> Ilu = o), 15+
k=1 jeJm

whose minimum is obviously attained for v(t) = (). It follows that P(t)u = @(t) in WZ™+H(Q)
for ¢ € [0, 7). The proof of the lemma is complete.

For each function u€W3™ ! (Q), the function P(t)u = @(t) is strongly continuous with
respect to t on [0,7] in W3™"1(Q) provided that the coefficients a; ;(¢) are strongly continuous

with respect to ¢ in £W2"2(S)), i € J_pm, j € Jm. The projections P(t) have a weak

derivative with respect to ¢ in W3™"1(€2), provided that the coefficients a; ;(t) are weakly
differentiable with respect to ¢ in LW T2(8)), i € J_p, j € Jp.

Lemma 2. Let the coefficients a;;(t) be strongly continuous with respect to t
in SOy V28), i € Jim, § € Jm, and have weak derivatives a; ;(t) €

Loo(]O,T[,S(ng_Hlﬂ(S)), 1€J _my, JEJm, with respect to t. For each function u €
W2m(Q), for almost all t, there exists a function w(t) € W™ H(Q) with boundary values

( i<j
v () = > ai (v, j€Jm, on S,
i€T _m
a'(t) =0, jéJ,UJ, onS,
7.7 () i<j]¢ (11)
yvu'(t) = > a;j(t)%-u, jeJ,,, on S, ,
(t)

on S, k=1,n,

in me_jH/Q(S), j =0,2m, (u(t) is the function in Lemma 1) such that

P'(t)u = w(t) for almost all t (12)
in the space W™ (Q) provided that

il (EW;™ 7T (S) Vi, (13)

in the data (11) for all ueW2™(Q).

Proof. In the boundary data (9), for almost all ¢, we pass to weak limits in the quotient
7 Ya(t + 1) — u(t)) in the spaces W22m_j+l/2(5), j = 0,2m, as 7—0 and use the weak
differentiability of the coefficients a; ;(t) with respect to ¢ in SW™ " M2(9)), i € T, § € T
then we obtain the boundary values (11), which are taken by the continuation mapping 7!
to a unique function w(t) € Wi™t(Q). Since the isomorphism 77! takes weak convergent

2m .
sequences in [[ W27 T2(9)
j=0
have P'(t)u = w(t) in W3™(Q) for almost ¢. The proof of this lemma and hence property (7)

of the projections P(t) are complete.
By using Lemmas 1 and 2 one can prove the following assertion.
Theorem 5. Let the coefficients DPa,eC([0,T] x Q), |B|<|al, have the derivative

00 /OtEL(]0, T[XQ), |a|<2m + 1, for almost all t, let the differential expressions A(t) with

to weak convergent sequences in W3 (Q) and vice versa, we



the boundary conditions (8) satisfy properties I in Theorem 4, and let the differential operator
Ag(t) = A(t) + col be coercive on D(A(t)) in WZ™H(Q) (i.e., the inequality

[u(®)llamire < el Ado(Du®)llon ¥ u(t)ED(A()) (14)

is valid for all t€[0, T, where cg > 0 is a constant independent of u and t). Let their conjugates
in Ly(S2) be given by some differential expressions

A= > ayt.a)Ds, Ay(t) = A(t) + ool

|a|<2m+1

with coefficients DPa*eC ([0, T] x Q), da’ /ot € Lo(]0,T[xQ), 3| <|a] <2m+1, and some
boundary conditions {I;(t)}; . satisfying the inequalities

@A @) /0)(t)lloe < el AsEvB)lon ¥V v()ED(A(H)), (15)

where ¢z>0 is a constant independent of v and t. If all coefficients a;;(t) are
strongly continuous with respect to t in E(meﬂﬂ/Q(S))) and have weak derivatives
a; ;(t)€Loo(]0,T7, LW 2(8))) with respect to t in Wy VA8, i€ p, jed, for
almost all t such that

{”a;,j(t)%uHO,S < cyluly  YueD(A(), i€)m, jE€JIm,

laf;(Dviulles < el VueD(A®)), €] m, jE€Jn, k=Tn,

(16)

where ¢ ;, cE?ZO are constants independent of w and t, and continuation conditions (10)
and (13) are valid, then the projections P(t) : W™ (Q) — D(A(t)) satisfy property II, in
Theorem 4.

Proof. 1. Property (i) of the projections P(t) follows from Lemmas 1 and 2.

2. If the differential operators A(t) satisfy Condition [, then there exist their bounded
inverse operators Ay (t) on Ly(Q) and u(t) = Ay* (t)g€ D(A(t)) for arbitrary g€ Ly (). Suppose
that for an arbitrary given value t,€[0, 7] some sequence t,—t, converges to t, as p—oo. By
virtue of the inequality ||u(?)|l2m+1.0 < ¢6llgllo.q, which follows from (14), one can single out a
subsequence t; — t such that u(t;) — wo weakly in W™ (Q) as [ — co. By passing to weak
limits in the boundary operators I';(¢;)u(t;) = 0 in mefjﬂ/z(S), JE€JIm, and I'j ,()u(t;) =0
in ng_jH/Q(Sk_),j € J.,k = 1,n, as [—oo and by using the strong continuity of their
coeflicients a; ;(t) with respect to ¢ in W;mfme(S), i € J_pm, j € Jpm, we obtain I';(tg)wy =
0, j € Jm, and T'jx(to)wo =0, j € J,., k=1,n, i.e., wy € D(A(ty)). Therefore, there exists a
function go€ L2(2) such that Ag(tg)wo = go. Since the coefficients a, of the differential operators
A*(t) are continuous with respect to ¢ for each veW2"+1(12), we trove || Ag(t)v— Az (to)v]lo.0—0
as [ — 00. So the right-hand sides of the relations

(v,9 = go)oo = ([A5(t1) — A3(to)]o, ult))o.q + (Aj(to)v, ultr) — wolos

tend to zero as [—oo for all ve Vf/ 5" 1(Q). The symbols (-, ), stand for the inner products

in the Sobolev space W7 (£2). By virtue of density of the set W 2m(Q)) in Ly(Q), we have g = g
in Ly(Q), and therefore, wy = Ay'(t)g = u(ty), i.e., the sequence u(t;) — wu(ty) weakly in
W3m™ Q) as | — oo. Since the sequence t, is arbitrary, it follows that u(t) = Ay (t)g is weakly
continuous functions with respect to ¢ on [0, 7] in the Sobolev space W™ ().



Let us show that the functions u(t) = A, '(t)g are strongly continuous with respect to ¢ in
the space W, (Q). By virtue of the inequalities

lut) = uto)llom+re < el Ao(6)[u(t) = ulto)]llo.,

to this end it suffices to show that their right-hand sides tend to zero as t — ;. Obviously,
| Ao(t)u — Ag(to)ullog — 0 for each ue€Wy™(Q) as t—t,, since the coefficients a, of the
differential operators A(t) are continuous with respect to ¢ and hence ||2{0<t>u||07g—>||A/0(t0)u||0’g
as t—ty. Therefore, the squared norms

1Ao(8)ult) = Ao(t)ulto)llf o = llglise — 2Re(g. Ao(H)ulto))og + | Ao(t)ulto)llF o

tend to zero as t — to for u(t) = Ay'(t)g.

Now, by using Lemma 2, we prove the weak differentiability of u(t) = Ay (t)g with respect
to t.

Lemma 3. Let the assumptions of Theorem 5 [without inequalities (15) u (16)] be valid.
Then for the function u(t) = Ay'(t)g the convergence

TPt + 1) (u(t +7) —u(t)) — w(t) weakly in WZ™HQ) as T — 0,

is walid for each g€Lo() and for almost all t, and there exists a wunique function
w(t)EWT™(Q) with the boundary values (11) for u = u(t) such that

o (8) = = Ay (£)(OA() /Dt )ult) — Ag () Ao(t)io(t) + a@(t), (17)

P(t)/(t) = = Ay (£ (9A(t) /0t)u(t) — Ay (1) Ao(t)i (1) (18)

for almost all t.
Proof. The functions u(t)€D(A(t)) and v€W,"(Q) satisfy the identities

7 NP+ 7)[ult + 7) — u(t)], V)omi1.0 = T H[P(t+7) — P(t)]u(t + 1), V)omi1.0—

=7 ([Pt +7) = POJu(t), v)omire + 7 (PO[u(t + 7) = u(t)], v)2ms1.0 (19)

for each t € [0,T]. Since the self-adjoint operators P(t) are weakly differentiable with respect
to t for almost all £ and the functions u(t) = A;'(t)g is strongly continuous with respect to ¢
on [0,7] in W™ (), we have

T H[P(t+ 1) = P(O)]u(t +7), v)amir0 =
=7 Nu(t+7), [Pt +7) = P()][v)2mi1.0 — (u(t), P'(t)v)ami10

for the first term on the right-hand side in (19) as 7 — 0 for almost all ¢. By Lemma 2, the her
second term has the limit

T [Pt +7) = P(O)]u(t), v)amsre — (P(Hu(t), v)amir0

as 7 — 0 for almost all £. To compute the limit of the third term on the right-hand side in (19),
we need the following assertion.

Lemma 4. [1, p. 144]. Let the assumptions of Lemma 3 be satisfied, and let P(t) :
W2 Q) — D(A(t)) be orthogonal projection operators. Then for each u, veW3™t(Q), there
exist functions w,(t) [respectively, v.(t)] in W3 (Q) such that



P(t+ 7)u —w,(t)eD(A(t)) [respectively, P(t)v — v, (t)eD(A(t+ 7))]
and
7 hw () — w'(t) [respectively, T v (t) — v'(t)] weakly in W™ (Q) as 7 — 0

for almost all t.
Proof. To prove the parenthesized assertions, we supplement the boundary conditions

( i<j i<j
Vv (t) — 0 aii(t+T)vv(t) =— >0 [ai(t+7) —ai;j(t)]yv(t), jEIm, onS,
e m e m
< 1<j 1<j . B 3 (20)
V0 (t) — JZ aij(t +7)vv.(t) = — JZ [a;;(t +7) — ai;(t)]yv(t), jed,, onS,,
i€ m €T m
L kE=1n,
with the boundary conditions
Yv-(t) =0, j¢Jn U J,,, on S; yju,(t) =0, j € J,, on S, k=1n. (21)

By using the mapping 7!, on the basis of the resulting boundary values v;v,(t), j = 0,2m, we

find functions v, (£)EW3™ 1 (Q) such that v(t) —v.(t)€D(A(t+7)) for all small 7. By passing in
7710 (t) to weak limit in W1 (Q) as 7 — 0, with the use of (20), (21) we trove the boundary
values

1<J
’ijl(t) == Z CL;JU:)’}/Z’U(?S)’ jGJ’ﬂH on S)
€J_m
1<J
W' () == D aj(t)y(t), jET,, on Sp, k=in,
1€J_m

v (t) =0, j&J, U J,, onS; vo'(t) =0, j€J,, on St k=1,n,

which, in view of the continuation mapping 7!, corresponds to some function v'(t)eW3™(Q).
The proof of the second assertion of Lemma 4 is complete. The first assertion can be proved in
a similar way. The proof of Lemma 4 is complete.

Thus, by virtue of the second assertion of Lemma 4 and the main properties of the
projections P(t), we have

(u(t+7) —u(t), P(t)v)amsr.0 = (Pt + 7)u, P(t)v — v (t))ams1.0 +
(Pt + 7)u,v:())2mr1,0 — (4, P(D)0)2mr1.0 = (u, P(H)v — v:(t))2m+1,0 +
+(P(t+ 7)u, vr(t))2msr,0 — (U, P)0)2mir.e = (P(E+ T)u — u, ve(t))2m+1,0-

Hence it follows that
T PO ult +7) — u(t)],v)amr10 — (P{t)u—u,v'(t))ami10 as 7 — 0

for almost all ¢ and for each veWZ™(Q).
As a result, by summing the resulting limits for the terms occurring on the right-hand side
in identity (19), we obtain

TP+ 7)[ult +7) —ult), v])ama — (PE)u—u, v'(t))ama as 7—0
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for each v€W5™(Q) and for almost ¢. Hence the functions u(t) = Ay *(t)g for all g € Ly(Q)
have the weak derivative u'(t) with respect to ¢ in W3™"(Q) for almost all t. The prove of
property (ii) of the projections P(t) is complete.

Let us compute this weak derivative. The computation of weak derivatives with respect to
t in the equation Ay(t)u(t) = ¢ in the space W™ (Q) and in the boundary data (11) in the

spaces Wzm i+ 2(S), 7 = 0,2m, necessitates considering the boundary value problems
Ag()u'(t) = —(DA(t) /0t)ult), e,
i<j
Ij(t)u'(t) = ~er a; ;(O)yu(t), j€Jm, on S,
i<j " _
L)' (t) = > a;j(t)%u(t), cd,, on S, k=1n
i€J—m

for almost all t. As was shown above, for almost all ¢ the boundary data (11) for the function
u = u(t) corresponds to the function w(t)eW;™ ! (2). Then the function w(t) = u/'(t) — w(t)
is a solution of the boundary value problems

Ag(tyw(t) = —(A() /otyu(t) — A(D)a(t), »€Q,
Ii(Hw(t) =0, j€dn, on S; T (Hw(t) =0, jed,., on S, k=

for almost all ; consequently,

w(t) = Ay (D)(QA()/0t)u(t) — Ay (8) Ao () (1)

for almost all ¢, and the derivative u'(t) can be expressed by formula (17).
For almost all ¢ and for all v(t)eD(A(t)), the squared distance |[u/'(t) — v(t)]|3,41.0 i
equivalent to

Z [l (w VO Bmjrrjes = D Is(u w(t))+

J€JIm
1<J
+ > a7t = v ngires + D 1@ E) = 0@ st
i€J_m JEImUJdm
n 1<j
S I ) —w®) + S a0t~ O)E iy ns
k=1 j€Jm i€J_m
+Z Z "7] ))Hgm J+1/25+7

k= 1]€J

whose minimum, by force of the boundary data (11) for u = wu(t), is obviously attained for
v(t) = w(t). It follows that P(t)u'(t) = w(t) in W7 (Q) for almost all t. Therefore, the
relation (18) is valid for almost all ¢. The proof of Lemma 3 is complete.

3. Thus, by passing to the conjugate in Lo(2) and by using formula (17), we have the
relations

(' (1), h)oo = —(u(t), (DA*(t) /o1 AL ()h)o.q — (Ag () Ao ()W (t) — W(t), h)og (22)

for almost all ¢ and for all h€Ly(f2). For the first term on the right-hand side in
this relation, the desired estimates (7) follow from the boundedness of the the operators

11



(DA*()/0t) A5 (t) € Loo(]0,T[, £(H)) by virtue of inequalities (15). The use of Greens’s
formula for integration by parts to the inequality

2m

145 0 Aotollie < esllollfa+ D Ivllss) ¥ veWz™ (), (23)

J=0

where cg>1 is a constant independent of v and ¢. The conjugate of the isometry [4, pp 20-56]

2m
W2m+l<Q) N ngm—j+1/2(s)

=0
is given by the isometry
2m
* —(2m—j+1/2 om—
v [T PTE(S) - @)
j=0

2m . 2m .
of the antidual spaces [] WZ_(zm_ﬁl/?)(S) and Wy ?™~1Q) onto the spaces [] W22m—]+1/2(5)
J=0 §=0

2m .

and W2™t1(Q), respectively. The restriction of the mapping v* to [] W;m_ﬁl/z(S) is the
§=0

mapping 7~ '. By applying the main interpolation theorem [5, p. 41] to the operator

7 €2<HW2m TGy pRmtl(Q )ﬂE(HW (m=3+1/2) (). WQ—2m—1(Q)>

2m .
with respect to the parameter #€]0, 1], we obtain the inclusion v* € S( [T Wy 7 7%(9), LQ(Q)> )

=0
for 0 =1/2, i.e.,
2m
llge < co ) Ivl2jues ¥ 0EWZ™ Q) (24)
=0

where ¢g > 0 is a constant independent of v and ¢. Then the desired estimates (7) for the second
term in (22) follow from inequalities (23), (24) and (16) by virtue of the boundary data (11) for
u = u(t). Property (iii) of the projections P(t) is valid. The proof of the theorem is compete.

Remark 4. Theorem 5 generalizes Theorem 6.1 in [1, p. 142| for self-adjoint leading parts
A (t) of the operator coefficient A(t) to the case of nonsymmetric operators A;(t) of accretive
operators A(t).

6. Applications. Let us apply the abstract obtained results to the investigation of well-
posed solvability of new class of mixed problems for odd-order linear partial differential
equations with time-dependent boundary conditions, which has not been researched by anybody
yet.

In the cylinder G =]0,T[xQ) of the variables ¢t and = = (z1,...,z,), where Q C R" is a
bounded domain with smooth boundary SeC*, we investigate the nonclassical equations

Qu(t,z)/ot + > au(t,z)Dlu(t,z) = f(t,x), m=0, 1,... (25)

|a|<2m+1
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with the boundary conditions (8) on S for t€[0, 7] and the initial condition

u(0,2) = ug(x), x €. (26)
Let the differential operators A(t) = Y aa(t,2)D® with the boundary conditions (8)
|| <2m+-1

satisfy the following conditions.

I3. The coefficients a,, of the equations (25) satisfy inclusion D?a,eC(Q), |B|<|a|< 2m +
1, for each t€[0,T], the differential operators A(t) are lower semibounded in Ly(2) on
W3 Qs T8}, 0y=) = {u®)eW;™ Q) : u(t)e(8)} and their conjugates in Ly(€2) on
W3m (€ {T;(t)},, 1y ) are given by some differential operators Aty = Y ai(t,z)D>

a|<2m+1
with some adjoint boundary conditions {I';(t)} . "

The coefficients a?, of their conjugates satisfy inclusion D%a’eC(Q), |8|<|al< 2m + 1,
for each t€[0,T], the differential operators A*(t) are also lower semibounded in Ly(£2) on
W2 {50} 5,000) — {u(EWZ™(Q) - u(t)e(T3(0)}s:))-

I15. All coefficients a, belong to C(G), and their derivative da, /0t belongs to L. (G). The
operators Ag(t) = A(t)+col are coercive on W2 (; {L()} 5, 05=) in La(R2) for some o > 0
and for any t€[0,T]; i.e.,

lullzmire < collAo(tullog ¥ ueW;™ Qs {T5(10)}5,05):

where ¢19 > 0 is a constant independent of u and ¢. All coefficients a}, belong to C(G), their
derivative 0a? /Ot belongs to Lo (G), and

@A (M) /0t)lloe < enllAitvloa ¥V veWF™H(Q; {T5(1)} ), (27)

where ¢11>0 is a constant independent of v and ¢. All coefficients a; ;(t) of boundary conditions
belong to C0, T, their derivative da; ;(t)/0t belongs to L (0,T), they satisfy inequality (16),
and functions admit the continuations (10) and (13) from S, to the entire set .

Since Conditions I3 — I3 provide the validity of properties I} — I} in V = W2™*(Q) and,
therefore, of Conditions I — II in H = Ly(£2), from Theorems 1, 3-5, we obtain the following
assertion.

Theorem 6. If Conditions Is — [I3 are satisfied, then for arbitrary functions
f € Ly(]0,T[, Wy™(Q; {I5(t)}ss)) and uo€Lo(QY), there evist unique weak solutions
u€Ls(G) of the mized problems (25), (8), (26).

Here W, ™ (§2; {T';(t)} ) are the antiduel spaces of the Hilbert spaces W3™(§2; {T'}(t)} s ),
which are obtained by the closure of the sets WZm™t((Q; {I%5(t)}sx,) in Hermitian norms
()@, t€0,T], corresponding to the formula (4).

For example, the Conditions I3 — II3 are satisfied for the following mixed problem for the
linearized Korteweg-de Vries equation:

du *u
0?u(t,0) 0?u(t,1) du(t,0)
2 ay (t)U(t, 0)7 o2 a'2(t)u(ta l)7 ox 07 0<t< Tv (29)
u(0,z) = up(x), 0<ax<lI, (30)
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where a€C|[0,T] is a strictly positive coefficients, da/0t€L(0,T), a;(t) € C[0,T] are
nonnegative coefficients, da; /0t € Lo (0,T), i =1, 2, and

if 3to€l0,T), such that ay(ty) =0 (respectively, as(ty) = 0),
then ay = 0 (respectively, as =0). (31)
1). The differential operators —A(t) = a(t)9®/823 with the boundary conditions (29) are
dissipative in L9(0,[). Their conjugates in Ly(0,1) are given by the differential expressions
—A*(t) = —a(t)0®/0x® with the boundary conditions
9*v(t,0) 0?v(t, 1)
Ox? 0z?

which are also dissipative in Lo(0,1).

2). The operators Ag(t) = A(t) + I are obviously coercive on W3(€; {T; (1)} j,00-) in La(€2)

for ¢g = 1 and for any t€[0, T]. Here we note that the squared norm HAVO(t)wHaQ is equal to

ov(t,1)

= —ay(t)v(t,0), e

= as(t)v(t, 1),

=0, 0<t<T, (32

1 Ao(t)wllf o = 2a(t)ar (£)]w(0)* + 2a(t)as () w(D)]*+
+a(t)|0w(l)/0x|* + a*(1)|0*w/027|[§ o + lwll5 o, € =]0,1[

The inequality (27) for m = 1 is also true. By virtue of condition (31), we have the inequality
(16) in the Theorem 5, where the squared norm [-]?t) is equal to

\/Re(ﬁo(t)u, woa = (a(t)ar ()[u(0) P+ +a(t)az(t)[u(D)]* + (a(t) /2)|0u(l) /0x[* + [|ullf o)'/*.

The Conditions (10) and (13) on the continuation of functions from the boundary on the entire
domain are obviously valid for a segment [5]. The verification of conditions I3 — I 113 is finished.
Therefore, Theorem 6 implies the following assertion.

Theorem 7. If 0 < ap < a(t), ai(t)>0, ax(t) >0, a(t)eC[0,T], Oda(t)/0t €L(0,T),
a;€C[0,T], 0a;/0teL(0,T), i = 1,2, and condition (31) is true, then for each
functions f€Ly(]0,T[, W5 (]0,1[; (32):)) and uo€Lo(0,1) there exists a unique weak solution
u€Ly(]0,T[x]0,1]) of the mized problem (28)-(30).

Here W5 '(]0,1[; (32);) — are the antidual spaces of the Hilbert spaces W4 (]0,[; (32);), which
are obtained by the closure of the set of all functions u(t)eW3(0,1) satisfying the boundary
conditions (32) in the norms (-)¢; which is equal to

\/Re(flé(t)v, voa = (a(t)ar () [v(0)]* + a(t)ax (t)[v(1)]* + (a(t)/2)|0v(0)/0z[* + [[v]|§ o).
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