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A krausz (k, m)-partition of a graph G is the partition of G into cliques, such 
that any vertex belongs to at most k cliques and any two cliques have at most m verti-
ces in common. The m-krausz dimension kdimm(G) of the graph G is the minimum 
number k such that G has a krausz (k, m)-partition. 1-krausz dimension is known and 
studied krausz dimension of graph kdim(G). In this paper we prove, that the problem 
“kdim(G) ≤ 3” is polynomially solvable for chordal graphs, thus partially solving the 
problem of P. Hlineny and J. Kratochvil. We show, that the problem of finding m-
krausz dimension is NP-hard for every ,1≥m  even if restricted to (1, 2)-colorable 
graphs, but the problem “kdimm(G) ≤ k” is polynomially solvable for (∞, 1)-polar 
graphs for every fixed k, m ≥ 1. 
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INTRODUCTION 
 

In this paper we consider finite undirected graphs without loops and multiple edges. 
The vertex and the edge sets of a graph (hypergraph) G are denoted by V(G) and E(G) re-
spectively. Given a graph G, let G(X) and G  denote, respectively, the subgraph of G in-
duced by a set X ⊆ V(G) and the complement of G.  

A krausz partition of a graph G is the partition of G into cliques (called clusters of the 
partition), such that every edge of G belongs to exactly one cluster. If every vertex of G be-
longs to at most k clusters then the partition is called krausz k-partition. The krausz dimen-
sion kdim(G) of the graph G is the minimum k such that G has krausz k-partition. 

Krausz k-partitions are closely connected with the representation of a graph as the in-
tersection graph of a hypergraph. The intersection graph L(H) of a hypergraph 
H = (V(H), E(H)) is defined as follows:  

1. the vertices of L(H) are in a bijective correspondence with the edges of H; 
2. two vertices are adjacent in L(H) if and only if the corresponding edges have a 

nonempty intersection. 
Hypergraph H is called linear, if any two of its edges have at most one common ver-

tex; k-uniform, if every edge contains k vertices; Helly hypergraph, if for every family of 
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hyperedges 1,..., ( )rЕ Е Е H∈  such that i iЕ Е ≠ ∅  for every i, j = 1,…, r we have 

1

.
r

i
i

Е
=

≠ ∅  

The multiplicity of the pair of vertices u, v of the hypergraph H is the number 

{ }( , ) ( ) : , ;m u v E E H u v E= ∈ ∈  the multiplicity m(H) of the hypergraph H is the maximum 

multiplicity of the pairs of its vertices. So, linear hypergraphs are the hypergraphs with the 
multiplicity 1. 

Denote by H∗ the dual hypergraph of H and by H[2] the 2-section of H (i. e. the simple 
graph obtained by transformation each edge into a clique). It follows immediately from the 
definition that  

 L(H) = (H∗)[2] (1) 
(first this relation was implicitly formulated by C. Berge in [2]). This relation implies that a 
graph G has krausz k-partition if and only if it is intersection graph of linear k-uniform hy-
pergraph.  

A graph is called (p, q)-colorable, if its vertex set could be partitioned into p cliques 
and q stable sets. In this terms (1, 1)-colorable graphs are well-known split graphs. 

Another generalization of split graphs is the class of polar graphs. A graph G is called 
polar if there exists a partition of its vertex set  
 ( ) ,V G A B=    A B = ∅  (2) 

(bipartition (A, B)) such that all connected components of the graphs ( )G A  and G(B) are 
complete graphs. If, in addition, α and β are fixed integers, and the orders of connected 
components of the graphs ( )G A  and G(B) are at most α and β respectively, then the polar 
graph G with bipartition (2) is called (α, β)-polar. Given a polar graph G with bipartition 
(2), if the order of connected components of the graph ( )G A  (the graph G(B)) is not re-
stricted above, then the parameter α (respectively β) is supposed to be equal ∞. Thus an ar-
bitrary polar graph is (∞, ∞)-polar, and a split graph is (1, 1)-polar. 

Denote by KDIM(k) the problem of determining whether kdim(G) ≤ k and by KDIM 
the problem of finding the krausz dimension. 

The class of line graphs (intersection graphs of linear 2-uniform hypergraphs, i. e. 
graphs with krausz dimension at most 2) have been studied for a long time. It is character-
ized by a finite list of forbidden induced subgraphs [1], efficient algorithms for recognizing 
it (i. e. solving the problem KDIM(2)) and constructing the corresponding krausz 2-partition 
are also known (see for example [4], [7], [13], [14]). 

The situation changes radically if one takes k = 3 instead of k = 2: the problem 
KDIM(k) is NP-complete for every fixed k ≥ 3 [5]. The case k = 3 was studied in the differ-
ent papers (see [6], [10], [11], [12], [15]), and several graph classes, where the problem 
KDIM(3) is polynomially solvable or remains NP-complete, were found.  

In [5] P. Hlineny and J. Kratochvil studied the computational complexity of the 
krausz dimension in detail. In particular, they proved, that for chordal graphs the problem 
KDIM(k) is NP-complete for every k ≥ 6. 

So, P. Hlineny and J. Kratochvil posed the problem of deciding the complexity of 
KDIM(k) restricted to chordal graphs for k = 3, 4, 5. In this paper we give a partial answer 
to this problem (namely, in the case k = 3).  
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Further we consider the natural generalization of the krausz dimension. The krausz 
(k, m)-partition of a graph G is the partition of G into cliques (called clusters of the parti-
tion), such that any vertex belongs to at most k clusters of the partition, and any two clusters 
have at most m vertices in common. As above, the relation (1) implies, that graphs with 
krausz (k, m)-partitions are exactly the intersection graphs of k-uniform hypergraphs with 
the multiplicity at most m. The m-krausz dimension kdimm(G) of the graph G is the mini-
mum k such that G has a krausz (k, m)-partition. The krausz dimension in these terms is the 
1-krausz dimension. In this paper we present some computational complexity results con-
cerning the m-krausz dimension of graph.  

 
FORMULATION  OF  THE  RESULTS 

 
Denote by lc(H) and Δ(H) the length of a longest induced cycle and the maximum 

vertex degree of a graph H, respectively.  
Lemma 1. There exists a polynomial-time algorithm, which takes a chordal graph G 

as an input and constructs the graph H with ∆(H) ≤ 18 and lc(H) ≤ 6 such that kdim(G) ≤ 3 
if and only if kdim(H) ≤ 3. 

P. Hlineny and J. Kratochvil proved in [5], that the problem KDIM is polynomially 
solvable for graphs with bounded treewidth. The following relation was proved in [3]: if 
lc(H) ≤ s + 2 and ∆(H) ≤ ∆, then treewidth(H) ≤ ∆ (∆ − 1)s − 1. These two facts together with 
Lemma 1 imply the following statement.  

Theorem 2. The problem KDIM(3) is polynomially solvable for chordal graph. 
Denote by KDIMm the problem of determining the m-krausz dimension of graph, by 

KDIMm (k) the problem of determining whether kdimm(G) ≤ k and by m
kL  the class of graphs 

with a krausz (k, m)-partition. It was proved in [8] that the class 3
mL  could not be character-

ized by a finite set of forbidden induced subgraphs for every m ≥ 2, but the complexity of 
the problem KDIMm for an arbitrary m was not established yet. We proved the following: 

Theorem 3. The problem KDIMm is NP-hard for every m ≥ 1, even if restricted to the 
class of (1, 2)-colorable graphs. 

The class m
kL  is hereditary (i. e. closed with respect to deleting the vertices) and there-

fore can be characterized by the infinite list of forbidden induced subgraphs. We proved the 
following: 

Theorem 4. There exists a finite set F of forbidden induced subgraphs such that an 
(∞, 1)-polar graph G belongs to the class m

kL  if and only if no induced subgraph of G is 

isomorphic to an element of F. 
Corollary 5. The problem KDIMm(k) is polynomially solvable in the class of (∞, 1)-

polar graphs for every fixed k, m ≥ 1. 
In particular, Corollary 5 generalizes the result of [5] and [9], that for every fixed k 

the problem KDIM(k) is polynomially solvable for split graphs.  
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