KRAUSZ DIMENSION AND ITS GENERALIZATIONS IN SPECIAL GRAPH CLASSES

O. V. Glebova ${ }^{1}$, Yu. M. Metelsky ${ }^{2}$, P. V. Skums ${ }^{3}$

${ }^{1,2}$ Belarusian State University
Minsk, Belarus
E-mail: glebovaov@gmail.com,metelsky@bsu.by
${ }^{3}$ Centers for Disease Control and Prevention
Atlanta, GA, USA
E-mail: skumsp@gmail.com

A krausz (k, m)-partition of a graph G is the partition of G into cliques, such that any vertex belongs to at most k cliques and any two cliques have at most m vertices in common. The m-krausz dimension $\operatorname{kdim}_{m}(G)$ of the graph G is the minimum number k such that G has a krausz (k, m)-partition. 1-krausz dimension is known and studied krausz dimension of graph $\operatorname{kdim}(G)$. In this paper we prove, that the problem " $\operatorname{ddim}(G) \leq 3$ " is polynomially solvable for chordal graphs, thus partially solving the problem of P. Hlineny and J. Kratochvil. We show, that the problem of finding m krausz dimension is NP-hard for every $m \geq 1$, even if restricted to (1,2)-colorable graphs, but the problem " $k \operatorname{dim}_{m}(G) \leq k$ " is polynomially solvable for $(\infty, 1)$-polar graphs for every fixed $k, m \geq 1$.

Key words: Krausz dimension, intersection graph, linear k-uniform hypergraph, chordal graph, polar graph.

INTRODUCTION

In this paper we consider finite undirected graphs without loops and multiple edges. The vertex and the edge sets of a graph (hypergraph) G are denoted by $V(G)$ and $E(G)$ respectively. Given a graph G, let $G(X)$ and \bar{G} denote, respectively, the subgraph of G induced by a set $X \subseteq V(G)$ and the complement of G.

A krausz partition of a graph G is the partition of G into cliques (called clusters of the partition), such that every edge of G belongs to exactly one cluster. If every vertex of G belongs to at most k clusters then the partition is called krausz k-partition. The krausz dimen$\operatorname{sion} \operatorname{kdim}(G)$ of the graph G is the minimum k such that G has krausz k-partition.

Krausz k-partitions are closely connected with the representation of a graph as the intersection graph of a hypergraph. The intersection graph $L(H)$ of a hypergraph $H=(V(H), E(H))$ is defined as follows:

1. the vertices of $L(H)$ are in a bijective correspondence with the edges of H;
2. two vertices are adjacent in $L(H)$ if and only if the corresponding edges have a nonempty intersection.
Hypergraph H is called linear, if any two of its edges have at most one common vertex; k-uniform, if every edge contains k vertices; Helly hypergraph, if for every family of
hyperedges $E_{1}, \ldots, E_{r} \in E(H)$ such that $E_{i} \bigcap E_{i} \neq \varnothing$ for every $i, j=1, \ldots, r$ we have $\bigcap_{i=1}^{r} E_{i} \neq \varnothing$.

The multiplicity of the pair of vertices u, v of the hypergraph H is the number $m(u, v)=|\{E \in E(H): u, v \in E\}| ;$ the multiplicity $m(H)$ of the hypergraph H is the maximum multiplicity of the pairs of its vertices. So, linear hypergraphs are the hypergraphs with the multiplicity 1.

Denote by H^{*} the dual hypergraph of H and by $H_{[2]}$ the 2-section of H (i. e. the simple graph obtained by transformation each edge into a clique). It follows immediately from the definition that

$$
\begin{equation*}
L(H)=\left(H^{*}\right)_{[2]} \tag{1}
\end{equation*}
$$

(first this relation was implicitly formulated by C. Berge in [2]). This relation implies that a graph G has krausz k-partition if and only if it is intersection graph of linear k-uniform hypergraph.

A graph is called (p, q)-colorable, if its vertex set could be partitioned into p cliques and q stable sets. In this terms $(1,1)$-colorable graphs are well-known split graphs.

Another generalization of split graphs is the class of polar graphs. A graph G is called polar if there exists a partition of its vertex set

$$
\begin{equation*}
V(G)=A \bigcup B, \quad A \cap B=\varnothing \tag{2}
\end{equation*}
$$

(bipartition (A, B)) such that all connected components of the graphs $\bar{G}(A)$ and $G(B)$ are complete graphs. If, in addition, α and β are fixed integers, and the orders of connected components of the graphs $\bar{G}(A)$ and $G(B)$ are at most α and β respectively, then the polar graph G with bipartition (2) is called (α, β)-polar. Given a polar graph G with bipartition (2), if the order of connected components of the graph $\bar{G}(A)$ (the graph $G(B)$) is not restricted above, then the parameter α (respectively β) is supposed to be equal ∞. Thus an arbitrary polar graph is (∞, ∞)-polar, and a split graph is $(1,1)$-polar.

Denote by $\operatorname{KDIM}(k)$ the problem of determining whether $\operatorname{kdim}(G) \leq k$ and by KDIM the problem of finding the krausz dimension.

The class of line graphs (intersection graphs of linear 2-uniform hypergraphs, i. e. graphs with krausz dimension at most 2) have been studied for a long time. It is characterized by a finite list of forbidden induced subgraphs [1], efficient algorithms for recognizing it (i. e. solving the problem $\operatorname{KDIM}(2)$) and constructing the corresponding krausz 2-partition are also known (see for example [4], [7], [13], [14]).

The situation changes radically if one takes $k=3$ instead of $k=2$: the problem $\operatorname{KDIM}(k)$ is NP-complete for every fixed $k \geq 3$ [5]. The case $k=3$ was studied in the different papers (see [6], [10], [11], [12], [15]), and several graph classes, where the problem $\operatorname{KDIM}(3)$ is polynomially solvable or remains NP-complete, were found.

In [5] P. Hlineny and J. Kratochvil studied the computational complexity of the krausz dimension in detail. In particular, they proved, that for chordal graphs the problem $\operatorname{KDIM}(k)$ is NP-complete for every $k \geq 6$.

So, P. Hlineny and J. Kratochvil posed the problem of deciding the complexity of $\operatorname{KDIM}(k)$ restricted to chordal graphs for $k=3,4,5$. In this paper we give a partial answer to this problem (namely, in the case $k=3$).

Further we consider the natural generalization of the krausz dimension. The krausz (k, m)-partition of a graph G is the partition of G into cliques (called clusters of the partition), such that any vertex belongs to at most k clusters of the partition, and any two clusters have at most m vertices in common. As above, the relation (1) implies, that graphs with krausz (k, m)-partitions are exactly the intersection graphs of k-uniform hypergraphs with the multiplicity at most m. The m-krausz dimension $\operatorname{kdim}_{m}(G)$ of the graph G is the minimum k such that G has a krausz (k, m)-partition. The krausz dimension in these terms is the 1 -krausz dimension. In this paper we present some computational complexity results concerning the m-krausz dimension of graph.

FORMULATION OF THE RESULTS

Denote by $l c(H)$ and $\Delta(H)$ the length of a longest induced cycle and the maximum vertex degree of a graph H, respectively.

Lemma 1. There exists a polynomial-time algorithm, which takes a chordal graph G as an input and constructs the graph H with $\Delta(H) \leq 18$ and $l c(H) \leq 6$ such that $\operatorname{kdim}(G) \leq 3$ if and only if $\operatorname{kdim}(H) \leq 3$.
P. Hlineny and J. Kratochvil proved in [5], that the problem KDIM is polynomially solvable for graphs with bounded treewidth. The following relation was proved in [3]: if $l c(H) \leq s+2$ and $\Delta(H) \leq \Delta$, then $\operatorname{treewidth}(H) \leq \Delta(\Delta-1)^{s-1}$. These two facts together with Lemma 1 imply the following statement.

Theorem 2. The problem $\operatorname{KDIM(3)}$ is polynomially solvable for chordal graph.
Denote by $K D I M_{m}$ the problem of determining the m-krausz dimension of graph, by $\operatorname{KDIM}_{m}(k)$ the problem of determining whether $\operatorname{kdim}_{m}(G) \leq k$ and by L_{k}^{m} the class of graphs with a krausz (k, m)-partition. It was proved in [8] that the class L_{3}^{m} could not be characterized by a finite set of forbidden induced subgraphs for every $m \geq 2$, but the complexity of the problem $K D I M_{m}$ for an arbitrary m was not established yet. We proved the following:

Theorem 3. The problem $K D I M_{m}$ is $N P$-hard for every $m \geq 1$, even if restricted to the class of (1, 2)-colorable graphs.

The class L_{k}^{m} is hereditary (i. e. closed with respect to deleting the vertices) and therefore can be characterized by the infinite list of forbidden induced subgraphs. We proved the following:

Theorem 4. There exists a finite set F of forbidden induced subgraphs such that an $(\infty, 1)$-polar graph G belongs to the class L_{k}^{m} if and only if no induced subgraph of G is isomorphic to an element of F.

Corollary 5. The problem $\operatorname{KDIM}_{m}(k)$ is polynomially solvable in the class of $(\infty, 1)$ polar graphs for every fixed $k, m \geq 1$.

In particular, Corollary 5 generalizes the result of [5] and [9], that for every fixed k the problem $\operatorname{KDIM}(k)$ is polynomially solvable for split graphs.

LITERATURE

[^0]3. Bodlaender, H. L. Treewidth for graphs with small chordality / H. L. Bodlaender, D. M. Thilikos // Discr. Appl. Math. 1997. Vol. 79. P. 45-61.
4. Degiorgi, D. G., Simon, K. A dynamic algorithm for line graph recognition / D. G. Degiorgi, K. Simon // Lecture Notes in Computer Science. 1995. Vol. 1017. P. 37-48.
5. Hlineny, P. Computational complexity of the Krausz dimension of graphs / P. Hlineny, J. Kratochvil // Lecture Notes in Computer Science. 1997. Vol. 1335. P. 214-228.
6. Jacobson, M. S. Recognizing intersection graphs of linear uniform hypergraphs / M. S. Jacobson, A. E. Kezdy, J. Lehel // Graphs and Comb. 1997. Vol. 4. P. 359-367.
7. Lehot, P. G. H. An optimal algorithm to detect a line graph and output its root graph / P. G. H. Lehot // J. Assoc. Comput. Mach. 1974. Vol. 21. P. 569-575.
8. Levin, A. G. Line Hypergraphs / A. G. Levin, R. I. Tyshkevich // Diskret. Mat. 1993. Vol. 5. № 1. P. 112129.
9. Metelsky, Yu. Split intersection graphs of hypergraphs with bounded rank / Yu. Metelsky // Vestsi Nats. Akad. Navuk Belarusi. Ser. Fiz.-Mat. Navuk. 1997. № 3. P. 117-122.
10. Metelsky, Yu. Line graphs of linear 3-uniform hypergraphs / Yu. Metelsky, R. Tyshkevich // J. Graph Theory. 1997. Vol. 25. P. 243-251.
11. Naik, R. N. Intersection graphs of k-uniform linear hypergraphs / R. N. Naik, S. B. Rao, S. S. Shrikhande, N. M. Singhi // Ann. Discrete Math. 1980. Vol. 6. P. 275-279.
12. Naik, R. N. Intersection graphs of k-uniform linear hypergraphs / R. N. Naik, S. B. Rao, S. S. Shrikhande, N. M. Singhi // Europ. J. Combin. 1982. Vol. 3. P. 159-172.
13. Naor, J. An efficient reconstruction of a graph from its line graph in parallel / J. Naor, M. B. Novick // J. Algorithms. 1990. Vol. 11. P. 132-143.
14. Roussopoulos, N. D. A $\max \{m, n\}$ algorithm for determining the graph H from its line graph $G /$ N. D. Roussopoulos // Inform. Process. Lett. 1973. Vol. 2. P. 108-112.
15. Skums, P. V. Edge intersection graphs of linear 3-uniform hypergraphs / P. V. Skums, S. V. Suzdal, R. I. Tyshkevich // Discrete Math. 2009. Vol. 309. P. 3500-3517.

[^0]: 1. Beineke, L. W. Derived graphs and digraphs / L. W. Beineke // Beitrage zur Graphentheorie, Leipzig. 1968. P. 17-33.
 2. Berge, C. Hypergraphs. Combinatorics of finite sets / C. Berge. Amsterdam: North-Holland Mathematical Library, 1989.
