УТВЕРЖДАЮ Проректор (название учреждения высшего образования) (И.О.Фамилия) (подпись) (дата утверждения) Регистрационный № УД- /р. Календарное планирование (название учебной дисциплины) Учебная программа учреждения высшего образования по учебной дисциплине для специальности: 1-26 02 02 <u>Менеджмент</u> (наименование специальности) (код специальности) Факультет экономический Кафедра аналитической экономики и эконометрики Экзамен 9 семестр Практические (семинарские) Зачет --Курсовая работа (проект) --

Аудиторных часов по

Курс (курсы) 2, 3

Лекции 10 часов

занятия 8 часов

KCP --

Семестр (семестры) 4, 5

учебной дисциплине 18 часов

Всего часов по Форма получения

учебной дисциплине 150 часов высшего образования заочная

Составил(а) А.М.Позняков

(И.О.Фамилия, ученая степень, ученое звание)

CO	CTA	ВИТЕ	пи.
\mathbf{v}	\mathbf{C}		

Позняков Андрей Михайлович, старший преподаватель кафедры аналитической экономики и эконометрики экономического факультета БГУ

РЕЦЕНЗЕНТЫ:
РЕКОМЕНДОВАНА К УТВЕРЖДЕНИЮ:
Кафедрой аналитической экономики и эконометрики экономического факультета Белорусского государственного университета
(протокол № от20г.);
Учебно-методической комиссией экономического факультета Белорусского государственного университета
(протокол № от 20г.)
Ответственный за редакцию: Позняков А.М.
Ответственный за выпуск: Позняков А.М.

пояснительная ЗАПИСКА

Учебная дисциплина «*Календарное планирование*» является дисциплиной вузовского компонента учебного плана специальности **1-26 02 02** «*Менеджмент*» и изучает задачи оптимального распределения ограниченных ресурсов во времени и является математической дисциплиной. Теоретические основы календарного планирования изучаются в рамках теории расписаний.

Задачи календарного планирования формулируются в терминах обслуживания требований приборами. Под требованиями понимаются проекты, детали, задания для компьютера, группы учащихся исполнителей проектов, станки, компьютерные системы, преподаватели и т.п. Целью является построение расписания обслуживания требований приборами, минимизирующего некоторую функцию стоимости, зависящую от моментов завершения обслуживания требований, а также построение расписания, допустимого относительно ограничений.

Цели преподавания дисциплины:

- дать теоретические основы в области построения оптимальных расписаний, оптимального распределения ограниченных ресурсов во времени, оптимального планирования производства и бизнеса во времени;
- научить студентов практическим навыкам математического исследования задач календарного планирования;
- привить способности к принятию оптимальных решений при исследовании задач планирования во времени.

Для решения поставленной цели определены следующие задачи:

- ознакомить студентов с основными моделями календарного планирования;
- указать на тесную связь моделей календарного планирования с экономическими приложениями,
- обучить методам построения эффективных (полиномиальных) алгоритмов точного и приближенного решения задач календарного планирования.

В результате изучения дисциплины студенты должны знать

- теоретические основы построения оптимальных расписаний, место теории расписаний в структуре дисциплин, занимающихся дискретной оптимизацией и основные модели и постановки задач календарного планирования, применимые в оптимизации производства;
- основные методы и алгоритмы решения задач теории расписаний а также вычислительную сложность данных алгоритмов.

В результате изучения дисциплины студенты должны уметь:

- оперировать общепринятой терминологией календарного планирования и осуществлять постановку производственных, организационных и иных экономических проблем в терминах задач календарного планирования;
- применять к задачам календарного планирования известные методы построения точных и приближенных решений а также определять трудоемкость алгоритмов решений задач.

Программа составлена с учетом требований действующих образовательных стандартов по экономическим специальностям и в увязке с другими курсами: «Высшая математика», «Компьютерные информационные технологии», «Теория игр и исследование операций», «Экономическая теория», «Микроэкономика» и др.

Самостоятельная работа студентов по учебной дисциплине включает выполнение управляемых самостоятельных работ и тестов, подготовку и выполнение письменных работ (контрольных работ, рефератов и докладов, электронных презентаций), выполнение программ рассмотренных алгоритмов.

Дисциплина изучается на протяжении **150** часов, в том числе аудиторных часов **18** (**10** часов - лекции, **8** часов - практические занятия).

ТЕМАТИЧЕСКИЙ ПЛАН

No	Название разделов, тем	Количество часов				
п/п		Аудиторные Лекции Практич., Лаб. УСР			УСР	Самост. работа
		,	семинар.	занят.		•
1.	ОСНОВНЫЕ МОДЕЛИ И МЕТОДЫ	6	4			24
1.1	Общая постановка задач календарного планирования. Система обозначений	2				4
1.2	Основы теории сложности вычислений.					4
1.3	Оптимальные последовательности требований и перестановочный прием.	1	1			4
1.4	Решение задач календарного планирования с помощью динамического программирования (ДП). Построение вполне полиномиальных ε-приближенных алгоритмов (ВППА)					4
1.5	Приближенные алгоритмы с гарантированными оценками точности.	1	1			4
1.6	Минимизация приоритето- порождающих функций.	2	2			4
2	ОДНОСТАДИЙНЫЕ СИСТЕМЫ	4	4			26
2.1	Один прибор, максимальный штраф.	1	1			5
2.2	Одни прибор, суммарный штраф	1	1			5
2.3	Параллельные приборы, максимальный штраф.	1	1			8
2.4	Параллельные приборы, суммарный штраф.	1	1			8
3.	МНОГОСТАДИЙНЫЕ СИСТЕМЫ					42
3.1	Обслуживающая система flow-shop.					14
3.2	Обслуживающая система open-shop.					14
3.3	Обслуживающая система job-shop					14
4.	ГРУППОВЫЕ ТЕХНОЛОГИИ ОБСЛУЖИВАНИЯ					40
4.1	Групповые технологии обслуживания					40
	Итого: общее кол-во часов	10	8			132

СОДЕРЖАНИЕ УЧЕБНОГО МАТЕРИАЛА

Раздел 1 ОСНОВНЫЕ МОДЕЛИ И МЕТОДЫ

Тема 1.1 Общая постановка задач календарного планирования. Система обозначений

- 1.1.1 Терминология «требования-приборы». Задачи Календарного планирования. Определение расписания. Оптимальное и допустимое расписание.
- 1.1.2 Классификация задач календарного планирования. Обозначения $\alpha |\beta| \gamma$. Примеры обозначений.

Тема 1.2 Основы теории сложности вычислений

- 1.2.1 Понятие вычислительной сложности алгоритма, полиномиально разрешимые и NP-трудные задачи.
- 1.2.2 Основная гипотеза теории сложности вычислений. Доказательство NP-трудности задачи. Классификация алгоритмов решения задач.

Тема 1.3 Оптимальные последовательности требований и перестановочный прием

1.3.1 Оптимальные последовательности требований SPT, LPT, EDD и SWPT. Построение расписаний по списку. Доказательство свойств оптимального расписания с помощью перестановочного приема.

Тема 1.4 Решение задач календарного планирования с помощью динамического программирования (ДП). Построение вполне полиномиальных ε-приближенных алгоритмов (ВППА)

- 1.4.1 ДП как метод построения множеств частичных решений и выбора доминирующих решений. Алгоритмы ДП для решения задачи минимизации суммарного штрафа за невыполнение директивных сроков.
- 1.4.2 Определение ВППА. Метод округления. Построение ВППА для задач календарного планирования.

Тема 1.5 Приближенные алгоритмы с гарантированными оценками точности

1.5.1 Понятие гарантированной оценки точности алгоритма. Алгоритмы построения расписаний по списку для систем параллельных приборов. Минимизация максимального момента завершения обслуживания требований, взвешенной суммы моментов завершения обслуживания требований и числа используемых приборов.

Тема 1.6 Минимизация приоритето-порождающих функций

1.6.1 Понятие частично упорядоченного множества, отношения предшествования и графа такого отношения. Определение функции приоритета и приоритето-порождающих функции. Минимизация приоритето-порождающих функций для различных видов графа отношений предшествования.

Раздел 2 ОДНОСТАДИЙНЫЕ СИСТЕМЫ

Тема 2.1 Один прибор, максимальный штраф

2.1.1 Минимизация максимального штрафа при наличии отношений предшествования.

Тема 2.2 Одни прибор, суммарный штраф

2.2.1 Минимизация числа запаздывающих требований и суммы моментов завершения обслуживания при разрешении прерываний и различных моментах поступления требований.

Тема 2.3 Параллельные приборы, максимальный штраф.

2.3.1 Минимизация максимального момента завершения обслуживания требований при разрешении прерываний и при наличии отношений предшествования в случае единичных длительностей обслуживания.

Тема 2.4 Параллельные приборы, суммарный штраф.

2.4.1 Минимизация среднего времени пребывания требований в системе при различной производительности приборов.

Раздел 3. МНОГОСТАДИЙНЫЕ СИСТЕМЫ

Tema 3.1. Обслуживающая система flow-shop

3.1.1 Минимизация максимального момента завершения обслуживания требований в случае двух приборов.

Тема 3.2. Обслуживающая система open-shop

3.2.1 Минимизация максимального момента завершения обслуживания требований в случае двух приборов. Минимизация максимального момента завершения обслуживания требований и среднего (взвешенного) времени пребывания требований в системе в случае единичных длительностей обслуживания.

Тема 3.3. Обслуживающая система job-shop

3.3.1 Минимизация произвольной неубывающей функции в случае двух требований при разрешении прерываний.

Раздел 4. ГРУППОВЫЕ ТЕХНОЛОГИИ ОБСЛУЖИВАНИЯ

Тема 4.1. Групповые технологии обслуживания

4.1.1 Алгоритмы решения задач в случае последовательного обслуживания одинаковых требований и в случае параллельного обслуживания разных требований.

КУРСОВАЯ РАБОТА (ПРОЕКТ)

Hе предусмотрено выполнение курсовой работы (проекта) учебным планом.

ИНФОРМАЦИОННО-МЕТОДИЧЕСКАЯ ЧАСТЬ

<u>Диагностика</u>. В процессе преподавания дисциплины используется текущий, периодический и итоговый контроль знаний, а также применяются следующие методы диагностики полученных знаний:

- устный опрос и решение задач при проведении практических занятий;
- выполнение контрольных работ;
- выполнение УСР (тестов в СОП «eUniversity» / письменных тестов);
- выполнение письменных работ (рефератов и докладов, электронных презентаций) и выполнение программ рассмотренных алгоритмов.

Кроме того, для аттестационного контроля учебной программой предусмотрен экзамен. Экзамен проводится в форме теста в СОП «eUniversity». Тест выполняется в течение 50 минут и включает 10 теоретических и практических вопросов по темам:

- Общая постановка задач календарного планирования. Система обозначений (теоретический вопрос);
- Основы теории сложности вычислений (теоретический вопрос);
- Оптимальные последовательности требований и перестановочный прием (задача малой размерности);
- Приближенные алгоритмы с гарантированными оценками точности (задача малой размерности);
- Минимизация приоритето-порождающих функций (задача малой размерности);
- Один прибор, максимальный штраф (задача малой размерности);
- Одни прибор, суммарный штраф (задача малой размерности);
- Параллельные приборы, максимальный штраф (задача малой размерности);
- Параллельные приборы, суммарный штраф (задача малой размерности);
- Обслуживающая система flow-shop / Обслуживающая система open-shop / Обслуживающая система job-shop / Групповые технологии обслуживания (задача малой размерности).

Весовые коэффициенты, определяющие вклад текущего и итогового контроля в рейтинговую оценку, по дисциплине следующие:

- вклад текущего контроля в рейтинговую оценку знаний по дисциплине 49 %;
- вклад итогового контроля в рейтинговую оценку знаний по дисциплине 51 %.

<u>Перечень основной и дополнительной литературы.</u> Основная литература:

- 1. Танаев В.С., Шкурба В.В., «Введение в теорию расписаний», М. «Наука», 1975
- 2. Танаев В.С., Гордон В.С., Шафранский Я.М., «Теория расписаний. Одностадийные системы», М. «Наука», 1984
- 3. Танаев В.С., Сотсков Ю.Н., Струсевич В.А., «Теория расписаний. Многостадийные системы», М. «Наука», 1989
- 4. Танаев В.С., Ковалев М.Я., Шафранский Я.М., «Теория расписаний. Групповые технологии», Мн. «ИТК НАН Беларси», 1998
- 5. Гэри М., Джонсон Д., «Вычислительные машины и труднорешаемые задачи», М. «Мир», 1982

- 6. Ковалев М.Я., Модели и методы календарного планирования. Курс лекций., Мн. БГУ, 2007.
- 7. Лазарев А.А., Гафаров Е.Р., «Теория расписаний. Задачи и алгоритмы», М. МГУ, 2011

Дополнительная литература:

- 8. Беллман Р., «Динамическое программирование», М. «ИЛ», 1982
- 9. Конвей Р.В., Максвелл В.Л., Миллер Л.В., «Теория расписаний», М. «Наука», 1975
- 10. Ковалев М.Я., Котов В.М., Лепин В.В., «Теория алгоритмов: Курс лекций. В 2 ч.
- Ч.2: Приближенные алгоритмы», Мн. «БГУ», 2003
- 11. Тахонов И.И., «Введение в теорию расписаний», Новосибирск, НГУ, 2011
- 12. Pinedo M.L. Scheduling. Theory, algorithms, and systems. 4ed., New York: New York: Springer Science+Business Media, 2012

ПРОТОКОЛ СОГЛАСОВАНИЯ УЧЕБНОЙ ПРОГРАММЫ

Название	Название	Предложения	Решение, принятое
учебной	кафедры	об изменениях в содержании	кафедрой,
дисциплины,		учебной программы	разработавшей учебную
с которой		учреждения высшего	программу (с указанием
требуется		образования по учебной	даты и
согласование		дисциплине	номера протокола $)^1$
1.			Пр. № от
			201 г.

ДОПОЛНЕНИЯ И ИЗМЕНЕНИЯ К УЧЕБНОЙ ПРОГРАММЕ на ____/___ учебный год N_0N_0 Основание Дополнения и изменения ПП Учебная программа пересмотрена и одобрена на заседании кафедры Аналитической экономики и эконометрики (протокол № от 201 г.) (название кафедры) Заведующий кафедрой д.ф-м.н., профессор М.М.Ковалев (подпись) **УТВЕРЖДАЮ** Декан факультета д.ф-м.н., профессор М.М.Ковалев

 $^{^{1}}$ При наличии предложений об изменениях в содержании учебной программы учреждения высшего образования по учебной дисциплине.