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Abstract: We study the structure of some classes of finite groups with a given system of commuting
generalized subnormal subgroups. In particular, our results yield a characterization of superradical and
Shemetkov formations.
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This article deals exclusively with finite groups.

Wielandt’s theory of subnormal subgroups greatly influenced the development of the whole finite
group theory. Shemetkov introduced the concept of an F-subnormal subgroup which is a natural gen-
eralization of subnormality in his book [1], where he also put forth the main problems of the theory
of F-subnormal subgroups.

Recall some concepts. A formation is a class of groups closed under quotients and subdirect products.
A formation is called saturated whenever it is closed with respect to Frattini extensions. We denote the
intersection of all normal subgroups of G' the quotients by which belong to T by G%, and call it the
F-coradical of G.

Take some nonempty formation §. A subgroup K of G is called § -subnormal whenever either K = G

or there exists a maximal chain
G=KiDK1D--DK,=K

such that (K;—1)¥ € K; foralli =1,2,...,n.

If § = M then in every soluble group G the set of all F-subnormal subgroups coincides with the set
of subnormal subgroups of G. However, this fails for arbitrary groups.

Kegel introduced another generalization of the concept of F-subnormality in [2]. A subgroup H is
called 3-subnormal in the sense of Kegel or §-accessible whenever there exists a chain of subgroups

G=Hy2H,2 - 2Hn=H

such that for every i = 1,2,...,m either H; is normal in H;_, or (Hi-1)% C H;.

Observe that for every nonempty formation § the set of all §-accessible subgroups of an arbitrary
group G includes the set of all subnormal subgroups of G and the set of all -subnormal subgroups of G.
However, if § is a nonempty nilpotent formation then the set of all F-accessible subgroups coincides
precisely with the set of all subnormal subgroups for every group G.

As in the theory of subnormal subgroups, the development of the theory of F-subnormal and
F-accessible subgroups started with the question: In which cases the subgroup generated by two §-
subnormal (F-accessible) subgroups is also an F-subnormal (F-accessible) subgroup?

Shemetkov and Kegel posed this problem in 1978. The articles [3,4] are devoted to its solution, and
their results are presented in [5]. The subsequent development of these results is related to considering
the products of commuting §-subnormal (F-accessible) subgroups. The class of formations under study
extends considerably if we replace the condition of the generation by F-subnormal (F-accessible) subgroups
by the weaker condition of being the product of commuting F-subnormal (F-accessible) subgroups. In
this case the problem of Shemetkov and Kegel extend as follows:

Problem 1. Classify the saturated formations § such that for every group G and all commuting
F-accessible subgroups H and K of G the subgroup HK is §-accessible in G.

Gomel. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 50, No. 4, pp. 890-901, July-August, 2009.
Original article submitted April 18, 2007.

706 0037-4466/09/5004-0706 (© 2009 Springer Science+Business Media, Inc.



Problem 2. Classify the saturated formations § such that for every group G and all commuting
5-subnormal subgroups H and K of G the subgroup HK is F-subnormal in G.

In the Kourovka Notebook [6] Shemetkov posed the problem of classifying superradical formations.
Recall that a formation § is called superradical whenever it satisfies the following requirements:

(1) ¥ is a normally hereditary formation;

(2) every group G = AB, where A and B are F-subnormal F-subgroups in G, belongs to §.

In this article we prove the equivalence of the above problems in the case that § is a saturated
hereditary formation.

The attempts to solve these and other classification problems revealed a special role of critical groups;
these groups lie outside the class §, but all their proper subgroups belong to §. Refer to a group of this
type as minimal non-F-groups, and denote there collection by AM(F).

In the Kourovka Notebook [6] Shemetkov posed the problem of classifying the saturated formations
whose minimal non-g-groups are either Schmidt groups or groups of prime order. These formations
are now called Shemetkov formations. In this article we obtain new characterizations of superradical
formations and Shemetkov formations. We use standard definitions and notation (L, 7].

In the following lemmas we collect the available properties of F-subnormal and§-accessible subgroups
needed for proving the main results of the article.

Lemma 1. Take some nonempty hereditary formation §. Then

(1) If K is a subgroup of G and G¥ C K then K is §-subnormal in G;

(2) If H is an §-subnormal (§-accessible) subgroup of G then HNK is an §-subnormal (§-accessible)
subgroup of K for every subgroup K of G;

(3) If H is an §-subnormal (§-accessible) subgroup of K and K is an F-subnormal (§-accessible)
subgroup of G then H is an §-subnormal (§-accessible) subgroup of G;

(4) If Hy and Hj are J-subnormal (3-accessible) subgroups of G then H, N Hj is an §-subnormal
(-accessible) subgroup of G;

(5) If all composition factors of a group G belong to § then every subnormal subgroup of G is
S-subnormal;

(6) If H is an §-subnormal (F-accessible) subgroup of G then H* is F-subnormal (F-accessible) in G
for every z € G.

Lemma 2. Take some nonempty formation §, some subgroup H of G, and some normal subgroup N
in G. Then

(1) If H is an §-subnormal (§-accessible) subgroup of G then HN is an F-subnormal (F-accessible)
subgroup of G, while HN/N is an §-subnormal (F-accessible) subgroup of G/N;

(2) If N C H then H is §-subnormal (F-accessible) in G if and only if H/N is an §-subnormal
(F-accessible) subgroup of G/N.

Lemma 3. Take some nonempty hereditary formation §. If A is an F-accessible subgroup of G
then A% is a subnormal subgroup of G.

The proof of Lemmas 1-3 goes by simple verification.

Lemma 4. Take some nonempty hereditary formation §. If § is the formation of all groups whose
composition factors belong to § then A9 = G9 for every §-subnormal subgroup A of a group G.
4

PROOF. By definition there exists a maximal chain G = Go O Gy D - D Gy = A such that G; 2
(Gizq)B for all i = 1,2,...,t. Since G,-_l/(G’,-_1)3 € 3, the heredity of § implies that Gi/(Gi1)® € 3.
Hence, (G3)® € (Gi-1)® for all i = 1,2,...,t. Since (Gi)® <« G; and (Gi)® C (Gi-1)® C Gi, we have
(G;)¥ < (Gi-1)3. Since § is a hereditary formation, so is §. Moreover, F C H. Therefore, G;/(Gi)® € §
and (G:)¥ € (Gi-1)® imply that (Gi—1)%/ (G;)¥ € . Hence, the subgroup A? is subnormal in G, and in
the segment from A® to G all composition factors belong to §. By Lemma 2 of [8] A® includes G9. The
inclusion AY C G9 follows from the heredity of $. The proof of the lemma is complete.
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Lemma 5. Take some nonempty hereditary formation §. If all composition factors of a group G
belong to § then the following are equivalent:

(1) H is an §-subnormal subgroup of G;

(2) H is an F-accessible subgroup of G.

PrOOF. Take some F-subnormal subgroup H of G. Then by definition H is an §-accessible subgroup
of G. Take some F-accessible subgroup H of G. Then there exists a chain

G=Gy2G12::-2G=H (%)

in which for every i = 1,2, ...,t either G; is normal in Gj_ or (Gi-1)% C Gi.

Suppose that (Gi-1)¥ € G;. Refine the segment from G; to Gi—1 in the chain (%) to a maximal
(Gi-1 — Gi)-chain.

By claim 1 of Lemma 1 all subgroups G;_; that include G; are F-subnormal in G;_;. Suppose now
that G; is normal in G;_;. We can assume that G; is a maximal normal subgroup of G;_;; otherwise,
refine the segment from G; to G;_1 to a composition (Gi-1 — Gi)-chain. The hypotheses of the lemma
yield G;—1/G; € ¥, and so (G,-_l)3 C G;. We arrive at the case considered above. By claim 3 of Lemma 1
the subgroup H is §-subnormal in G. The proof of the lemma is complete.

A Shemetkov formation § is called an &-Shemetkov formation whenever each soluble minimal non-
F-group is either a Schmidt group or a group of prime order.

Lemma 6 [9]. Take some saturated formation § and some hereditary local formation §). If G € ./ (3)
and G/K € (%), where K C ®(G), then G € .#(9).

Lemma 7. Each nonempty saturated formation § such that for every group G and all commuting
F-subnormal subgroups H and K of G the subgroup HK is §-subnormal in G is an G-Shemetkov
formation.

PROOF. Take some saturated formation § such that for each group G and all commuting §-subnormal
subgroups H and K of G the subgroup HK is §-subnormal in G. Take an arbitrary soluble minimal
non-g-group G. If G & & z) then it is not difficult to observe that G is a group of prime order ¢ with
q ¢ (%)

Suppose that G € ®,(z) N.#(F). Consider the case that ®(G) = 1. Theorem 1.5 of [10] implies that
G = N X\ M for the unique minimal normal subgroup N in G, which is a p-group, and M € #(f(p)),
where f is a maximal inner local screen of §. It is obvious that Cg(N) = N.

In order to show that M has a unique class of maximal conjugate subgroups, assume the contrary.
Take two maximal nonconjugate subgroups M; and M, in M. Then M = M, M; by Ore’s theorem. Since
N = G3, it is obvious that NM; and N M, are §-maximal normal §-subgroups of G. Lemma 1 implies
that M; and M, are F-subnormal subgroups of G. Then by hypothesis M is an §-subnormal subgroup
of G. We have arrived at a contradiction. Thus, M has a unique class of maximal conjugate subgroups.
Hence, M is a cyclic g-subgroup. Since § is a saturated formation and G ¢ §, we have ¢ # p.

To show now that |M| = g, assume the contrary and take |M| = ¢" with n > 1. Take two cyclic
groups E and L of order ¢"~! and g respectively. Denote by T the regular wreath product EwrL. Denote
by K the base of the wreath product: T = K X L. Since a subgroup of T is isomorphic to M, T & f(p).
It is obvious that K and L belong to the formation f(p).

Put R = PwrT, where |P| = p. Denote by C the base of the wreath product R. Then R=CXT =
CXN(KXNL) Since R/C ~ KX L € §, we have RS C C. Hence, the subgroups CK and CL are
F-subnormal in R. It is easy to see that CK € § and CL € §.

By Lemma 1 it is not difficult to show that K and L are §-subnormal in R. By hypothesis the
subgroup K L is also §-subnormal in R, which is impossible.

The resulting contradiction shows that n = 1. Consequently, G is a Schmidt group. Thus, we have
showed that G/®(G) is a Schmidt group. Lemma 6 implies that G is a Schmidt group and so § is
an G-Shemetkov formation. The proof of the lemma is complete.
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Lemma 8. Each nonempty saturated normally hereditary soluble formation § such that for every
group G and all commuting §-subnormal subgroups H and K of G the subgroup HK is §-subnormal
in G is a hereditary formation.

PROOF. Verify that § = §°, where §° is the maximal hereditary subformation in §. Suppose that
%\ 3° is nonempty and choose in F\ §° a group G of the least order. Theorem 1 of [11] and Theorem 4.3
of [1] imply that §° is a saturated formation. Therefore, ®(G) = 1. It is obvious that G has a unique
minimal normal subgroup N, and that Cg(N) = F(G) = N. Since G ¢ §°, G includes a minimal
non-§>-group H. The normal heredity of ¥ implies that |w(H)| > 1. It is clear that H is also a minimal
non-g-group.

By hypothesis, H is a Schmidt group. In this case H = RQ, where @ is a normal Sylow g-subgroup,
while R is a cyclic r-subgroup of H, with ¢ and r being distinct primes.

If HN N =1 then

HN/N~H/HNN~Heg C3.

We have arrived at a contradiction with the choice of H. It remains to accept that X = HN N # 1.
Together with H/K € § this implies that K C @; hence, N is a g-group. Consider H* = H/®(H). Then
we can represent H* as

H* = Q2(H)/®(H) X R®(H)/®(H),

where Q®(H)/®(H) is an elementary abelian g-group, while |R®(H)/®(H)| = r. Since H* lies outside §,
Lemma 4.5 of [1] implies that
H*|Fy(H") > Z, & f(q),

where f is a maximal inner local screen of §. Since Cg(N) = N and N = F,(G); therefore, Fy(G) is

a g-group. Hence,
rem(G/N) € n(f(q))-

By Theorem 4.7 of [1] the normal heredity of § implies that f(g) is a normally hereditary formation. It
is not difficult to show that Z, € f(¢g). We have arrived at a contradiction. Therefore, § = §°. The
proof of the lemma is complete.

Given a set 7 of primes, denote by &, the class of all m-groups. Recall that a 7-closed group
is a group possessing a normal 7-Hall subgroup; a w-special group is a group possessing a nilpotent
normal 7-Hall subgroup; a m-decomposable group is a group which is simultaneously m-special and 7'~
closed; a w-nilpotent group is a group which includes a normal p/-Hall subgroup for every p € .

In the following theorem I stands for some set of ordered pairs of nonnegative integers.

Theorem 1. Every formation of the form § = ﬂ(i_j)e 1 ®x, G+, enjoys the property that for every
group G and all commuting §-subnormal subgroups H and K of G the subgroup HK is §-subnormal
in G.

PROOF. By Theorems 1 and 2 of [12] every formation of the form § = [; j)c; ®x ®x, contains every
group G = AB, where A and B are §-subnormal F-subgroups of G.

The proof continues by induction on the order of G. Take two commuting §-subnormal subgroups A
and B of G. Put T = AB. Take a minimal normal subgroup N of G. Taking Lemma 2 into account,
we find by induction that TN/N is an §-subnormal subgroup of GN. Lemma 2 implies that TN is
an J-subnormal subgroup of G. If TN # G then by induction T" is an F-subnormal subgroup in T'N.
Hence, T is §-subnormal in G.

Suppose now that TN = G for every normal subgroup of G. It is obvious that T = 1. If AS #1
then by Lemma 1 the subgroup A¥ is subnormal in G. By Wielandt’s Theorem 7.10 of [1]

1# (A% = (BTN T

Thereby, Tg # 1. We have arrived at a contradiction. Hence, AS = 1. Similarly we can prove that
B =1,
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In order to show that AN € § and BN € 3, consider the following cases.

1. Suppose that N is an abelian subgroup. Theorem 15.10 of (1] implies that (AN)S C ®(AN).
Since § is a saturated formation, AN € §. Similarly we can prove that BN € 3.

2. Suppose that N is a nonabelian subgroup. Then N = N; x Ny x - x Ny is the direct product of
isomorphic nonabelian simple groups. Since 4 € §, (AN)¥ C N. If (AN)¥ = N then AN = (AN )5 A,
which is impossible because A is §-subnormal in AN. Thus, (AN)S C N. If (AN)3 # 1 then

(AN = N, X Niy X oo X Nj. .

Since § is a hereditary formation, N/(AN )% € §. However, then it is not difficult to observe that NV € 3.
Lemma 1 implies that N is an F-subnormal subgroup in AN. By hypothesis, AN € §. We find similarly
that BN € §. Lemma 2 implies that AN and BN are §-subnormal subgroups of G. By hypothesis,
G € §. Since § is a hereditary formation, T is an §-subnormal subgroup of G. The proof of the theorem
is complete.

Corollary 1.1. Take some hereditary formation § = §§. For every group G and all commuting
§-accessible subgroups H and K of G the subgroup HK is §-accessible in G.

Corollary 1.2. Take the formation § of all n-decomposable groups. Then for every group G and
all commuting §-subnormal subgroups H and K of G the subgroup HK is §-subnormal in G.

Corollary 1.3. Take the formation § of all m-nilpotent groups. Then for every group G and all
commuting §-subnormal subgroups H and K of G the subgroup HK is §-subnormal in G.

Corollary 1.4. Take the formation § of all m-closed groups. Then for every group G and all
commuting §-subnormal subgroups H and K of G the subgroup HK is §-subnormal in G.

Theorem 2. Take some hereditary saturated formation §. The following are equivalent:

(1) every group G = AB, where A and B are §-accessible §-subgroups in G, belongs to §:

(2) § is a superradical formation;

(3) for every group G and all commuting §-subnormal subgroups H and K of G the subgroup HK
is §-subnormal in G;

(4) for every group G and all commuting F-accessible subgroups H and K of G the subgroup HK
is F-accessible in G.

PROOF. The equivalence of claims 1 and 2 follows from Theorem 1 of [12].

Let us show that claim 2 implies claim 3 by induction on the order of G. Take two commuting §-
subnormal subgroups A and B of G and put T = AB. Take a minimal normal subgroup N of G. Taking
Lemma 2 into account, we find by induction that TN, /N is an F-subnormal subgroup of GN. Lemma 2
implies that TN is an §-subnormal subgroup of G. If TN # G then by induction 7T is an $-subnormal
subgroup in T'N; hence, T is F-subnormal in G.

Suppose now that 7'N = G for every minimal normal subgroup N of G. It is obvious that T = 1. If
AS # 1 then by Lemma 1 the subgroup A¥ is subnormal in G. Then by Wielandt’s Theorem 7.10 of [1],

1# (A5 =™ T

Consequently, T # 1. We have arrived at a contradiction. Thereby, A% = 1. Similarly we can prove
that BS = 1.

In order to show that AN € § and BN € g, consider the following cases.

1. Suppose that N is an abelian subgroup. Theorem 15.10 of (1] implies that (AN)® C ®(AN).
Since § is a saturated formation, AN € §. Similarly we can prove that BN € §.

2. Suppose that N is a nonabelian subgroup. Then N = Ni x Na x -+ x Ny is the direct product of
isomorphic nonabelian simple groups. Since A € §, (AN)¥ C N. If (AN)8 = N then AN = (AN)S A,
which is impossible since 4 is F-subnormal in AN. Thus, (AN)® C N. If (AN )¥ #1 then

(AN)¥ = Nj, x Nip x +-- x N;

n*
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Since § is a hereditary formation, N/(AN )3 € §. It is not difficult to observe that N € §. Lemma 1
implies that N is an F-subnormal subgroup in AN. By hypothesis, AN € 3. Similarly we find that
BN € §. Lemma 2 implies that AN and BN are §-subnormal subgroups of G. By hypothesis, G € 5.
Since § is a hereditary formation, T is an F-subnormal subgroup of G.

In order to show that claim 3 implies claim 2, take a counterexample G of the minimal order. Then
G = AB, where A and B are §-subnormal §-subgroups, but G ¢ §. Take a minimal normal subgroup N
of G. Since AN/N and BN/N are §-subnormal subgroups of G/N, by induction G/N € §. Since § is
a saturated formation, G includes a unique minimal normal subgroup N = G%, and ®(G) =1.

Consider the subgroups AN and BN. Since A is a proper §-subnormal subgroup of G and N = GS,
AN # G. Similarly, BN # G. Verify that AN € §.

Suppose that N is an abelian group. Theorem 15.10 of [1] implies that (AN)S C $(AN ). Since § is
a saturated formation, AN € Z.

Suppose that N is a nonabelian group. In this case N = Ny x Np X --- x N, is the direct product of
isomorphic nonabelian simple groups, and Cg(N) = 1.

Consider the subgroup H = AN. Lemma 2 implies that H = AN is an §-subnormal subgroup of G.
Consider the subgroup A¥ C H # G. By the Dedekind identity,

A = AP NG = A" NAB = A(AE N B).

Lemma 1 implies that A N B is an F-subnormal subgroup of A#. Since S is a hereditary formation
and B € §, we have A¥ N B € §. By induction, A € 3. If AT "N = 1 then AH C Ce(N)=1. We
have arrived at a contradiction. Hence, A" N N # 1. Since A is a normal subgroup in AN; therefore,
A" N N is a normal subgroup in N. Then

ATNN =N, x Nj, x -+« x Ny,

where NN;; are isomorphic nonabelian simple groups for j = 1,2,...,k. Since A¥ € Fand Fisa hereditary
formation, we have AT N € §. This easily implies that N € §. Since N = G¥, Lemma 1 implies that N
is an §-subnormal subgroup of G. Since AN # G, it follows that by induction AN € 3. Similarly we can
prove that BN € §.

Take some complement K to N in G. Since ®(G) = 1, we have K # G. Since § is a saturated
formation, we deduce from G/N = KN/N ~ K/KNN € § and K NN C ®(K) that K € 3. By the
Dedekind identity,

AN =ANNKN = N(ANNK).

If ANNK =1 then AN = N. Thus, G = AB = ANB = NB, which is impossible because N = G¥
and B is a proper §-subnormal subgroup of G.

Thus, AN N K # 1. Since AN is an §-subnormal subgroup of G and AN € §, the heredity of §
implies that ANN K is an §-subnormal subgroup of G. Similarly we find that BN = N (BNNK), where
BN N K is an §-subnormal subgroup of G. Then

G = AB = N(ANNK)(BN N K).

By hypothesis, (ANNK)(BNNK) is an §-subnormal subgroup of G, which is impossible because N = G¥
and (AN N K)(BN N K) C K. Consequently, G € F.

In order to show that claim 4 implies claim 3, take a group G, of the least order for which the impli-
cation fails. Take a minimal normal subgroup N of G. Given two commuting F-subnormal subgroups A
and B of G, Lemma 2 implies that AN/N and BN/N are commuting F-subnormal subgroups in G/N.
Since |G/N| < |G|, by induction AN/N - BN/N = ABN/N is an F-subnormal subgroup in G/N.

Take the formation § of all groups all of whose composition factors belong to §. Lemma 4 yields
A% = B% = G9. If G lies outside 5 then, taking N in G?, we find that AB = ABN is an F-subnormal
subgroup of G. This is a contradiction; hence, G € §. The claim of the theorem follows from Lemma 5.

We can prove the fact that claim 4 implies claim 1 in the same fashion as the fact that claim 3 implies
claim 2. The proof of the theorem is complete.
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Corollary 1.5. Take some hereditary soluble saturated formation §. The following are equivalent:

(1) the formation § is such that for every group G and all commuting §-subnormal subgroups H
and K of G the subgroup HK is §-subnormal in G;

(2) the formation § is such that for every group G and all commuting §-accessible subgroups H
and K of G the subgroup HK is §-accessible in G:

(3) the formation ¥ is of the form § = ﬂ(i’j)e 1 67.6nx;.

PROOF. The fact that claims 1 and 2 are equivalent follows from Theorem 2. Verify that claims 2
and 3 are equivalent. Indeed, § is an G-Shemetkov formation by Lemma 6. Now claim 3 follows from
Corollary 1 of [13]. Claim 2 follows from claim 3 of Theorem 2. The proof of the corollary is complete.

Lemma 9. Take some hereditary saturated formation § such that .# (§) € 6. The following are
equivalent:

(1) § is a superradical formation;

(2) § is of the form § = ﬂ(i’j)el (N,

PROOF. Suppose that § is a superradical formation. Let us prove firstly that every minimal non-3-
group is either a group of prime order or a Schmidt group.

Take an arbitrary minimal non-F-group G. By the hypothesis of the theorem. G is soluble. If
G ¢ B, (5 then it is not difficult to observe that G is a group of prime order g with q & 7 (F).

Consider the case ®(G) = 1. Theorem 1.5 of [10] implies that G = N X\ M for the unique minimal
normal subgroup N of G, which is a p-group, and M € .#(f(p)), where f is a maximal inner local screen
of §. It is obvious that Cs(N) = N.

In order to show that M is a primary cyclic subgroup, assume the contrary. Since M is a soluble
group, it includes maximal subgroups M; and M; such that M = M;M,. Since N = G3 , wWe see that
NM; and NM; are §-maximal normal §-subgroups of G. However, then G = NM, - NM;. Since §
is a superradical formation, G € §. This is a contradiction; thus, M has the unique class of maximal
conjugate subgroups. Hence, M is a cyclic g-subgroup. Since F is a saturated formation and G € 5, we
have g # p.

Show now that |M| = g. Assume the contrary. Take |M| = ¢", where n > 1. Take cyclic groups E
and L of order ¢"~! and g respectively. Denote by 7" the regular wreath product EwrL. Denote by K the
base of the wreath product: 7= K X L. Since a subgroup of T is isomorphic to M, we have T' & f(p).
It is obvious that K and L belong to the formation f(p).

Put R = PwrT, where |P| = p. Denote by C the base of the wreath product R. Then R = CX\T =
CX(KXL). Since R/C ~ KX L € §; therefore, R¥ C C. Hence, the subgroups CK and CL are
§-subnormal in R. It is easy to see that CK € § and CL € §. Since $ is a superradical formation,
R € §. However, F,(R) = C, and therefore T'~ R/C € f(p).

The resulting contradiction shows that n = 1. Consequently, G is a Schmidt group. Thus, we have
showed that G/®(G) is a Schmidt group. Now Lemma 6 implies that G is a Schmidt group.

Take some maximal inner local screen f of the formation 3. Verify that § has a complete local
screen h such that hA(p) = &, (s, for every p in (). Indeed, take some formation §* with a local
screen h and show that §* = §. Since f(p) C h(p) for every prime p in (F), we see that § C F*.

In order to verify the inverse inclusion, take a group G of the least order in $*\§. Since h(p) is
a hereditary formation, so is §*. This means that G € .#(F). Since J is a saturated formation, it is not
difficult to show that ®(G) = 1.

We have showed above that G is either a group of prime order or a Schmidt group. Suppose that G
is a group of prime order and |G| = ¢. It is not difficult to show that 7(3*) = 7(F). Since G € §*, we
have g € m(F). This implies that G € §, which is a contradiction.

Suppose now that G is a Schmidt group. Since ®(G) = 1, the properties of Schmidt groups imply
that G = Gy X\ Gy, where G), = F,(@) and |G4| = ¢. Since G € §*, we have G/G, € h(p). 1t follows from
G/Gy ~ G, that G, € h(p) = G (f(p))- Since g € w(f(p)) and f(p) is a hereditary formation, G, € f(p).
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Now the facts that G/G, € §, where G,, is the unique minimal normal subgroup of G, and G/G,, € f(p)
imply that G € §. We have arrived at a contradiction. Thus, §F* C §. Hence, §* = §.
Since h is a local screen of the formation §, we have

= [ 8,Bxm) NG
pen(S)
Thereby, § is a formation from claim 2.

Put 5= ﬂ(i,j)e 16,6, and take a group G such that G = AB, where A and B are §-subnormal
F-subgroups in G. Let us show that G € § by induction on the order of G. Take a minimal normal
subgroup N in G. It is obvious that AN/N and BN/N are §-subnormal subgroups of G. By induction,
G/N € §. This implies that G has a unique minimal normal subgroup N. It is obvious that ®(G) = 1
and N = GS.

Show that AN € §. If N is an abelian group then Theorem 15.10 of [1] implies that AN belongs
to §. Suppose now that N is a nonabelian group. In this case N = Nj x Ny x --+ x N; is the direct
product of isomorphic nonabelian simple groups, and Cg(N) = 1. Consider the subgroup H = AN. It
is clear that H = AN is an §-subnormal subgroup of G. Consider the subgroup A¥ C H # G. By the
Dedekind identity,

AR = AHnG =AY NnAB = A(A¥ nB).
It is obvious that A¥ N B is an §-subnormal subgroup of A¥. Since § is a hereditary formation and
B € §, we have A N B € §. By induction, A” € §. If A" NN = 1 then A¥ C Cg(N) = 1. This
is a contradiction; hence, A N N # 1. Since A¥ is a normal subgroup in AN, A¥ N N is a normal
subgroup in N. However, then
AFAN =Ny, x N, x -+ x Ny,

where N;, are isomorphic nonabelian simple groups. Since A” € ¥ and § is a hereditary formation,
AP NN € § Thereby, N € §. Since N = G¥ and A is a proper F-subnormal subgroup of G, we
have AN # G. It is obvious that N and A are §-subnormal in AN. By induction, AN € §. Hence,
AN € 6,8, for all (2,7) in L.

Similarly we can prove that BN € &, ®;, for all (i,j) in I. It follows from AN € &, &, that
AN/O;,(AN) € &4,.

Consider the cases N N Ox,(AN) # 1 and N N O (AN) = 1.

Suppose that N N On, (AN) # 1 and show that N € &;,. If N is abelian then N is a p-group.
Consequently, N € ®,,. If N is nonabelian then

]V=N1 XNQX“-XNt
is the direct product of isomorphic nonabelian simple groups. Since N N O, (AN) is a normal subgroup
in N,
NNOz(AN) = N;, x Njp X+ -+ X Ny,
Since N N Oy, (AN) € &,,, we have N € &,,. Since G/N € G, &, ; therefore, G € &, G, for all (i, )
in I. Consequently, G € §, which is a contradiction.
Suppose now that N N O, (AN) = 1. If N is nonabelian then Cg(N) = 1. Then

Om(AN) = CG(N) =1,
This implies that O, (AN) = 1, and so AN € &,,.
Consider the subgroup N N Oy, (BN). If NN Oy (BN) # 1 then G € § as above, which is a con-
tradiction. If N N Oy, (BN) = 1 then BN € ®,, as above. Since G = AN - BN, we have G € O,.

Consequently, G € §, which is a contradiction.
If N is an abelian group then Cg(N) = N. Thus,

Or (AN) C Ce(N)=N.

We deduce from G/N € .8, that G € 6,6y, for all (,j) in I. This means that G € §, which is
a contradiction. Consequently, § is a superradical formation. The proof of the lemma is complete.
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Theorem 3. Take some hereditary saturated formation . The following are equivalent:
(1) § is a Shemetkov formation;
(2) § contains every group G = AB, where A and B are -accessible §-subgroups in G, and

H(F) C &;

(3) F is a superradical formation and M (F) C 6;
(4) § is such that .#(F) € & and for every group G and all commuting §-subnormal subgroups H

and K of G the subgroup HK is §-subnormal in G;

(5) ¥ is such that #(F) € & and for every group G and all commuting F-accessible subgroups H

and K of G the subgroup HK is -accessible in G;

0O oo~

10.
11.
12.

13.

(6) ¥ is of the form § = ﬂ(,-_j)e, 65,8y, and M(F) C 6.
The proof follows from Theorems 1, 2 and Lemmas 7, 9.
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