NEW EVALUATION OF DECAY AND RADIATION CHARACTERISTICS OF 198 Au

Chechev V.P., Kuzmenko N.K.

Khlopin Radium Institute, St. Petersburg, Russia
E-mail: chechev@khlopin.ru

The isotope ¹⁹⁸Au is widely used in radiotherapy, medical diagnostics and activation analysis. Therefore high-quality evaluated decay data are merited for this radionuclide.

This ¹⁹⁸Au decay data evaluation has been carried out within the Decay Data Evaluation Project (DDEP) [1]. The previous DDEP evaluation for ¹⁹⁸Au was done by E. Schönfeld and R. Dersch in 1998 with minor update in 2004 [2]. The current evaluation takes into account experimental data and other information (compilations, analyses, corrections) published up to May 2014.

The ¹⁹⁸Au half-life of 2.6943(3) days was evaluated in this work taking into account the new measurements and corrections of 2005–2014. The recommended value of the half-life was obtained as the weighted average of 26 experimental values published since 1953.

The energies of β^- transitions of ¹⁹⁸Au were obtained using the $Q(\beta^-)$ value of 1372.8 (5) keV from the new mass tables [3] and the ¹⁹⁸Hg level energies adopted from [4]. The probabilities of β^- -transitions P_{β^-} were deduced from the gamma ray transition probabilities ($P(\gamma+ce)$) balance at each level of ¹⁹⁸Hg.

Gamma ray transition probabilities were obtained from their γ ray emission probabilities and the total internal conversion coefficients interpolated with the BrIcc computer program [5] from the tables of Band *et al.* [6].

The recommended γ ray emission probabilities ($P\gamma$) in decay of ¹⁹⁸Au given below were deduced using averaged measured relative γ ray intensities. The normalization factor (0.9562(6)%) to convert the adopted relative gamma ray intensities to absolute emission probabilities was obtained from the gamma ray transition intensity balance at the ground state of ¹⁹⁸Hg.

Energy, keV	<i>P</i> γ, %
411.80205(17)	95.62(6)
675.8836(7)	0.804(5)
1087.6842(7)	0.1591(21)

- 1. M.-M.Bé, R.G.Helmer // J. Nucl. Science Tech. Supp. 2002. V.2. P.481.
- 2. M.-M.Bé *et al.* Table of Radionuclides. V.2. A = 151 to 242. 2004. Monographie BIPM-5, V.2. P.121. Sevres: Bureau International des Poids et Mesures.
- 3. M. Wang et al. // Chin. Phys. C. 2012. V.36. P.1603.
- 4. Huang Xiaolong // Nuclear Data Sheets. 2009. V.110. P.2533.
- 5. T.Kibédi et al. // Nucl. Instrum. Methods Phys. Res. A. 2008, V.589, P.202.
- 6. I.M.Band et al. // At. Data Nucl. Data Tables, 2002, V.81, P.1.