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Let r be a finitely generated group. It is well known (see [1]-[3]) that for an 
arbitrary linear algebraic group G defined over a field K, the set of all representa­
tions p: r -+ Gk can be identified with the set R(r, G)k of K -points of a certain 
K-defined variety R(r, C), called the variety of representations. Thus the variety 
R(r, G) , a basic object in geometric representation theory, furnishes a natural pa­
rametrization of the family of all representations of r in G; so that by obtaining 
a description of R(r, G) we obtain extended information on the representations 
of r. 

The present note examines the case that r r g is the fundamental group of a 
compact oriented surface of genus g, i.e., the group given by the copresentation 

rg = (Xl, Yl, ... , x g , Ygl[xy , yJ1· .. [xg , Yg] = 1) 

where [X, y] = xyx-Iy-1 . Here the variety R(r, SL2(lR)) of real unimodular rep­
resentations comes up in Riemann surface theory; specifically, the so-called Fricke 
space, closely connected with the variety of moduli, is a domain on R(r, SL2 (lR)) 
(see [4]). We give a description of the variety R(r, SL2(lR)) of n-dimensional rep­
resentations and of the corresponding variety Rn (r) R(r, GLn) of n-dimensional 
representations and of the corresponding variety Xn (r) of n-dimensional characters 
for the case that the ground field has characteristic O. 

For a matrix a E Mn we denote by fa()..) its characteristic polynomial fa(A) = 
det()"En - a), and by at (a), ... , an(a) the coefficients of .fa()..); i.e., 

fa()..) =)..n + al (a))..n-l + ... + an(a). 

For h E SLn , we denote by Th the variety of Mn defined by the system 

(1) 

Consider the following two conditions: 
I) There exists a nonempty Zariski Q-open subset U c SLn such that for any 

h E U the variety Th is irreducible. 
2) For any x, y E GLn , the set xZ(y) , where Z(y) is the centralizer of y in 

GLn , contains a regular element (i.e., an element Z such that dimZ(z) n). 

Theorem 1. Suppose conditions 1) and 2) are satisfied. Then the variety Rn(r) is an 
(absolutely) irreducible Q-rational variety, of dimension (2g - l)n 2 + 1 for g > 1 
and n2 + n for g 1 . 

Theorem 2. Under the hypothesis of Theorem 1, for g > 1 the variety Xn (r) is an 
irreducible Q-defmed variety ofdimension (2g- 2)n2 . •Moreover, the rationalfunction 
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field Q(Xn(r)) is a purely transcendental extension of the field Q(Xn(F2g- 2)) , where 
F2g-2 is the free group ofrank 2g - 2. 

Further, we show that condition 2) is "almost always" satisfied automatically; 
namely, it is certainly satisfied if the element Y is semisimple (Proposition 4). Using 
this fact, we are able to verify the validity of I) and 2) for n :::; 4. On the other 
hand, for n :::; 4 the variety Xn(Fm) is rational for any m (see [7] and [8]). Thus, 
we obtain 

Corollary. For g > 1 and n :::; 4, the variety Xn (r) is rational over Q. 

We proceed to the proof of the theorems. The case g = I is easily worked out; 
everywhere below, therefore, g > I and n > 1 . The first nontrivial fact here is the 
irreducibility of the variety Rn (r) . 

We denote by F the subgroup of r generated by XI, YI , ... , Xg_l, Yg_1 , and by 
rp: Rn (r) -+ Rn(F) the corresponding morphism of the varieties of representations. 
Since, as we know, F is a free group of rank 2(g - 1) (see [5]), the variety Rn(F) 
coincides with the product GLn x ... x GLn (2(g 1) times), and in particular is 
irreducible. On the other hand, the fact that every element of SLn is a commutator 
in GLn (see [6]) implies that rp is surjective. 

Proposition 1. rp(V) = Rn(F), for any irreducible component V c Rn(r). 

Proposition 2. Suppose, for h E SLn , that the variety Th is irreducible. Then if 
condition 2) is satisfied, the variety 

Jfh = {(x, y) E GLn x GLn I[x, y] = h} 

is likewise irreducible. 

Now suppose Rn(r) u1=1 Vi is a decomposition into irreducible components 
with d> 1. Put Uj = Vi\(UJT"i Vj), i = I, ... , d, and let Uo = q.t-I(U), where U 
is the open set of condition 1) and q.t: GLn x ... x GLn -+ SLn the morphism given 
by 

q.t(XI , Yl , ... , Xg_1 , Yg-J) = [Xl, yd", [Xg_1 , Yg-d. 
From Proposition 1 and the irreducibility of Rn(F) we obtain that the intersection 
rp( Ud n rp( U2) n Uo is nonempty; let a be a point in this intersection. Then the 
fiber Z rp -I (a) is isomorphic to the variety W'I'(a) and therefore, in view of 
our constructions and Proposition 2, irreducible. It follows that Z c Jii for some o 
ioE{l, ... ,d}. But a=rp(ut} = rp(U2) for some UjEUj , i I, 2, such that UI, 

U2 E Z. Each of uI, U2, however, lies in just one irreducible component, so that 
Vi = Vio = J/2 ; and we have a contradiction. 

ProofofProposition 1. It suffices to show that any irreducible component VeRn (r) 
has a nonempty open subset Vo such that for any point v E Vo the differential 
dvrp: ~J(V) -+ Trp(v)(Rn(F)) is surjective. First one verifies: 

Lemma 1. Let v = (XI, YI, ... , xg , Yg) E Rn(r) be a point such that the ele­
ments Xg and Yg are regular and dim(Z(xg) n Z(Yg)) = 1. Then the mapping 
dvrp: Tv(Rn(r)) -+ Trp(v)(Rn(F)) is surjective. 

Suppose now that for an irreducible component V C Rn(r) we have rp(V) ::j:. 
Rn(F). Let VI be the open subvariety of V consisting of those points (XI, YI, ... , 
x g , Yg) such that Xg and Yg are regular elements; from condition 2) it follows that 
Vi ::j:. 0. Then, by Lemma 1, (Vi C GL~g-2 xL, where L = {(x, y) E GLn x GLn Ix 
and yare regular and dim(Z(x) n Z(y)) > 1}. 
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Lemma 2. 1) dimL ~ 2n2 - 2(n - 1). 
2) For any h E SLn the dimension ofany irreducible component T C Wh lies in 

the interval n2+ 1 ~ dim T ~ n2 + n . 
3) dim V ~ (2g - l)n 2 + I. 

From parts I) and 2) of Lemma 2 we obtain, using the theorem on the dimension 
of fibers of a morphism, that 

dim V ~ 2(g - 2)n2 + n2 + n + 2n2 - 2(n - I) = (2g - l)n2 - n + 2. 

Comparing this inequality with part 3) of Lemma 2 gives n ~ I, a contradiction. 
This proves the irreducibility of Rn (r). The dimension of Rn (r) is easily computed 
by considering the morphism £5: GLn x GLn ----+ SLn , £5 (x , y) = [x, y]. Since £5 
is surjective [6], there exists, by the theorem on dimension of fibers, an open set 
W c SLn such that dim£5- 1(w) = 2n2 - (n 2 - I) = n2 + I for any W E W. Put 
Wo = ,¥-l(W), where '¥: GL~g-2 ----+ SLn is given by '¥(Xl' YI , ... , gg-I , Yg-d = 
[XI, yd'" [Xg_I , Yg-d. Then for any v E Wo we have dim tp-I (v) = n2 + I, so 
that dimRn(r) = dimRn(F) + n2 + I = (2g - l)n2 + I. 

The proof of the rationality of Rn (r) is based on the following assertion. 

Proposition 3. There exists a nonempty IQ-open subset B c SLn such that for any 
extension KIIQ and any point h E Bk the variety Wh is an irreducible K -rational 
variety ofdimension n2 + I . 
Proof. Denote by BI a IQ-open subset of SLn with the following properties. 

I) B I consists of regular semisimple elements. 
2) For h E BI the variety Th is irreducible, and Wh has dimension n2 + I. 
Suppose h E B J Consider the projection n: Wk ----+ GLn , n(x, y) = y, and• 

put T = Imn. Let TO (resp. T~) be the open subset of T (resp. of Th n GLn) 
formed by the regular semisimple elements. It is easily seen that T c Th and 
TO c T~ c 1m n , so that in fact TO = T~. Since obviously TO 1= 0, it follows from 
the irreducibility of Th that T = Tk n GLn ; in particular, T is open in Th . 

We examine now the system (I) defining Th . From the definition of the charac­
teristic polynomial h(),.) of a matrix a = (aij) it follows that the coefficient a,(a) 
of ),.n-, is, up to sign, the sum of all the principal minors of order r. Expanding by 
elements of the first column those principal minors that contain all, we obtain for 
a,(a) a representation of the form 

a,(a) = L
n 

PI,all + Q, , 
1=1 

where 
PI" Q, E &' = K[aij] i=l, ... ,n . 

j=2, ... ,n 

Let a;j be the element in position (i, j) in the matrix ha. Then 

a,(ha) = L
n 

Pi,a!l + Q; , 
1=1 

where the Pi, and Q~ are the polynomials obtained by substituting the a;} for the 
aij. Using the expressions for the a;j in terms of the aij, we now easily establish 

the existence of polynomials PI" Q, E &' such that 

a,(ha) = L
n 

PI, all + Q, . 
1=1 
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We see, therefore, that (1) reduces to a system of n 1 linear equations in the 
elements of the first column of the matrix a: 

n 

(2) LPI,al1 = q" r==l, ... ,n 1, 
1=1 

where PI" qr E tfJ . 
Let B2 be the subset of SLn consisting of those h for which the corresponding 

system (2) is of rank n - 1. It is easily seen that B2 is Q-open and nonempty. 
We show now that the Q-open subset B = BI n B2 :f 0 in SLn has the desired 
property. Suppose hE B. Then in the matrix of the system (2) defining the variety 
Th there exists a minor of order n - 1 identically not equal to zero. From Cramer's 
rule it follows that this minor is different from zero on Th and that the coordinates 
aill , •.. , ain_ll connected with it can be expressed in a rational fashion in terms 
of the others. This proves the rationality of Th , and therefore of T, since T is 
open in Th . The rationality of Wh now follows automatically, since finding the first 
coordinate of the point (x, y) E Wh when the second is fixed reduces to solving the 
matrix equation xy hyx, which is equivalent to a linear system in the elements 
of the matrix x. This completes the proof of Proposition 3. 

There is now no difficulty in completing the proof of Theorem 1. Consider­
ing "generic" n x n matrices Xl, YI , ... , Xg-l , Yg-l , let K be the field gener­
ated over Q by the elements of these matrices, and construct the matrix h 
[Xl, yd'" [Xg-l , Yg-d E SLn(K). Then the Q-rational function field Q(Rn(r)) is 
isomorphic to the K-rational function field K(Wh-l)' Since h is a "generic" point 
of the group SLn over Q, it lies in the Q-open subset B constructed in Proposition 
3; therefore, by that proposition, Wh-' is K-rational, i.e., the extension K(Wh-d/K 
is purely transcendental. But K is a purely transcendental extension of Q, and 
therefore the same is true of Q(Rn(r) ::::: K(Wh-l). 

Proofof Theorem 2. There exists a commutative diagram 

in which rJ and r are the natural projections of the varieties of representations onto 
the corresponding varieties of characters (see [2]), and rp and <5 are induced by the 
restriction. It is easily seen that the subset Wo c Rn (F) of irreducible representations 
is a nonempty open Q-defined subvariety. Let W C Xn(F) be an open subset 
contained in r(Jto) (clearly Cl(W) cWo), and suppose WE Wand WE o-I(w). 
It is easily seen that rJ indices a bijective Q-defined morphism 

a: F == rp-I(W) ~ O-I(W) = D. 

Thus, the fibers F and Dare birationally isomorphic over the field over which they 
are both defined. 

Now let p be a generic point over Q of the variety Rn(r); w = rJ(p) and 
J..l = o(w) generic points of Xn(r) and Xn(F) , respectively; and G = 0-1(J..l) a 
generic fiber of O. Since condition 1) and Proposition 2 imply that G is irre­
ducible, the field L Q( Xn (r) is isomorphic to the rational function field K (G) , 
where K = Q(J..l) = Q(Xn(F». Clearly, there exists a preimage W E cl(w), 
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(i) (Xl, YI , ... , Xg-l , Yg-J), such that h [XI, yd", [Xg-l , Yg-d E SLn(K). 
It follows from the above that G is isomorphic over K to the variety Wh - l , which 
is K -rational. This gives the desired result. 

Proposition 4. Suppose x, Y E GLn , with Y semisimple. Then the set xZ(y) con­
tains a regular semisimple element. 

Explicit computations in each of the remaining cases yield a complete verification 
of 2) for n ::; 4. 

Remark. All the above results remain valid for a group r with n 2: 4 generators 
Xl, ... ,Xn and one defining relation of the form r = rl[xn-3, Xn-2][Xn-1 , xn], 
where rl lies in the commutator subgroup of the free group F(XI, ... , Xn-4) . 

This work has been supported by the Fund for Basic Research of the Republic of 
Belarus. 
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