THE GEOMETRIC THEORY OF REPRESENTATIONS FOR THE FUNDAMENTAL GROUPS OF COMPACT ORIENTED SURFACES
UDC 512.547+512.552

A. S. RAPINCHUK AND V. V. BENYASH-KRIVETS

Let Γ be a finitely generated group. It is well known (see [1]–[3]) that for an arbitrary linear algebraic group G defined over a field K, the set of all representations $\rho: \Gamma \to G_K$ can be identified with the set $R(\Gamma, G)_K$ of K-points of a certain K-defined variety $R(\Gamma, C)$, called the variety of representations. Thus the variety $R(\Gamma, G)$, a basic object in geometric representation theory, furnishes a natural parameterization of the family of all representations of Γ in G; so that by obtaining a description of $R(\Gamma, G)$ we obtain extended information on the representations of Γ.

The present note examines the case that $\Gamma = \Gamma_g$ is the fundamental group of a compact oriented surface of genus g, i.e., the group given by the copresentation $\Gamma_g = \langle x_1, y_1, \ldots, x_g, y_g \mid [x_i, y_i] \cdots [x_g, y_g] = 1 \rangle$

where $[x, y] = xyx^{-1}yx^{-1}$. Here the variety $R(\Gamma, SL_2(\mathbb{R}))$ of real unimodular representations comes up in Riemann surface theory; specifically, the so-called Fricke space, closely connected with the variety of moduli, is a domain on $R(\Gamma, SL_2(\mathbb{R}))$ (see [4]). We give a description of the variety $R(\Gamma, SL_2(\mathbb{R}))$ of n-dimensional representations and of the corresponding variety $X_n(\Gamma)$ of n-dimensional characters for the case that the ground field has characteristic 0.

For a matrix $a \in M_n$ we denote by $f_a(\lambda)$ its characteristic polynomial $f_a(\lambda) = \det(\lambda E_n - a)$, and by $\sigma_1(a), \ldots, \sigma_n(a)$ the coefficients of $f_a(\lambda)$; i.e.,

$$f_a(\lambda) = \lambda^n + \sigma_1(a)\lambda^{n-1} + \cdots + \sigma_n(a).$$

For $h \in SL_n$, we denote by T_h the variety of M_n defined by the system

$$\sigma_1(a) = \sigma_1(ha), \ldots, \sigma_{n-1}(a) = \sigma_{n-1}(ha).$$

Consider the following two conditions:

1) There exists a nonempty Zariski Q-open subset $U \subset SL_n$ such that for any $h \in U$ the variety T_h is irreducible.

2) For any $x, y \in GL_n$, the set $xZ(y)$, where $Z(y)$ is the centralizer of y in GL_n, contains a regular element (i.e., an element Z such that $\dim Z(z) = n$).

Theorem 1. Suppose conditions 1) and 2) are satisfied. Then the variety $R_n(\Gamma)$ is an (absolutely) irreducible Q-rational variety of dimension $(2g - 1)n^2 + 1$ for $g > 1$ and $n^2 + n$ for $g = 1$.

Theorem 2. Under the hypothesis of Theorem 1, for $g > 1$ the variety $X_n(\Gamma)$ is an irreducible Q-defined variety of dimension $(2g - 2)n^2$. Moreover, the rational function
field \(\mathbb{Q}(X_n(\Gamma)) \) is a purely transcendental extension of the field \(\mathbb{Q}(X_n(F_{2g-2})) \), where \(F_{2g-2} \) is the free group of rank \(2g-2 \).

Further, we show that condition 2) is "almost always" satisfied automatically; namely, it is certainly satisfied if the element \(y \) is semisimple (Proposition 4). Using this fact, we are able to verify the validity of 1) and 2) for \(n \leq 4 \). On the other hand, for \(n \leq 4 \) the variety \(X_n(F_m) \) is rational for any \(m \) (see [7] and [8]). Thus, we obtain

Corollary. For \(g > 1 \) and \(n \leq 4 \), the variety \(X_n(\Gamma) \) is rational over \(\mathbb{Q} \).

We proceed to the proof of the theorems. The case \(g = 1 \) is easily worked out; everywhere below, therefore, \(g > 1 \) and \(n > 1 \). The first nontrivial fact here is the irreducibility of the variety \(R_n(\Gamma) \).

We denote by \(F \) the subgroup of \(\Gamma \) generated by \(x_1, y_1, \ldots, x_{g-1}, y_{g-1} \), and by \(\varphi: R_n(\Gamma) \to R_n(F) \) the corresponding morphism of the varieties of representations. Since, as we know, \(F \) is a free group of rank \(2(g-1) \) (see [5]), the variety \(R_n(F) \) coincides with the product \(GL_n \times \cdots \times GL_n \) \((2g-1) \) times, and in particular is irreducible. On the other hand, the fact that every element of \(SL_n \) is a commutator (see [6]) implies that \(\varphi \) is surjective.

Proposition 1. \(\varphi(V) = R_n(F) \), for any irreducible component \(V \subset R_n(\Gamma) \).

Proposition 2. Suppose, for \(h \in SL_n \), that the variety \(T_h \) is irreducible. Then if condition 2) is satisfied, the variety

\[W_h = \{(x, y) \in GL_n \times GL_n | [x, y] = h\} \]

is likewise irreducible.

Now suppose \(R_n(\Gamma) = \bigsqcup_{i=1}^{d} V_i \) is a decomposition into irreducible components with \(d > 1 \). Put \(U_i = V_i \setminus (\bigsqcup_{j \neq i} V_j) \), \(i = 1, \ldots, d \), and let \(U_0 = \Psi^{-1}(U) \), where \(U \) is the open set of condition 1) and \(\Psi: GL_n \times \cdots \times GL_n \to SL_n \) the morphism given by

\[\Psi(x_1, y_1, \ldots, x_{g-1}, y_{g-1}) = [x_1, y_1] \cdots [x_{g-1}, y_{g-1}] \].

From Proposition 1 and the irreducibility of \(R_n(F) \) we obtain that the intersection \(\varphi(U_i) \cap \varphi(U_0) \) is nonempty; let \(a \) be a point in this intersection. Then the fiber \(Z = \varphi^{-1}(a) \) is isomorphic to the variety \(W_{\Psi(a)} \), and therefore, in view of our constructions and Proposition 2, irreducible.

It follows that \(Z \subset V_0 \), for some \(i_0 \in \{1, \ldots, d\} \). But \(a = \varphi(u_1) = \varphi(u_2) \) for some \(u_1 \in U_i \), \(i = 1, 2 \), such that \(u_1 \), \(u_2 \in Z \). Each of \(u_1 \), \(u_2 \), however, lies in just one irreducible component, so that \(V_i = V_{i_0} = V_2 \); and we have a contradiction.

Proof of Proposition 1. It suffices to show that any irreducible component \(V \subset R_n(\Gamma) \) has a nonempty open subset \(V_0 \) such that for any point \(v \in V_0 \) the differential \(d_v \varphi: T_v(V) \to T_{\varphi(v)}(R_n(F)) \) is surjective. First one verifies:

Lemma 1. Let \(v = (x_1, y_1, \ldots, x_g, y_g) \in R_n(\Gamma) \) be a point such that the elements \(x_g \) and \(y_g \) are regular and \(\dim(Z(x_g) \cap Z(y_g)) = 1 \). Then the mapping

\[d_v \varphi: T_v(R_n(\Gamma)) \to T_{\varphi(v)}(R_n(F)) \]

is surjective.

Suppose now that for an irreducible component \(V \subset R_n(\Gamma) \) we have \(\varphi(V) \neq R_n(F) \). Let \(V_1 \) be the open subvariety of \(V \) consisting of those points \((x_1, y_1, \ldots, x_g, y_g) \) such that \(x_g \) and \(y_g \) are regular elements; from condition 2) it follows that \(V_1 \neq \emptyset \). Then, by Lemma 1, \(V_1 \subset GL_{2g-2}^n \times L \), where \(L = \{(x, y) \in GL_n \times GL_n | x \) and \(y \) are regular \}.
Lemma 2. 1) \(\dim L \leq 2n^2 - 2(n - 1) \).

2) For any \(h \in \text{SL}_n \) the dimension of any irreducible component \(T \subset W_h \) lies in the interval \(n^2 + 1 \leq \dim T \leq n^2 + n \).

3) \(\dim V \geq (2g - 1)n^2 + 1 \).

From parts 1) and 2) of Lemma 2 we obtain, using the theorem on the dimension of fibers of a morphism, that

\[
\dim V \leq 2(g - 2)n^2 + n^2 + n + 2n^2 - 2(n - 1) = (2g - 1)n^2 - n + 2.
\]

Comparing this inequality with part 3) of Lemma 2 gives \(n \leq 1 \), a contradiction.

This proves the irreducibility of \(R_n(\Gamma) \). The dimension of \(R_n(\Gamma) \) is easily computed by considering the morphism \(\delta: \text{GL}_n \times \text{GL}_n \to \text{SL}_n \), \(\delta(x, y) = [x, y] \). Since \(\delta \) is surjective [6], there exists, by the theorem on dimension of fibers, an open set \(W \subset \text{SL}_n \) such that \(\dim \delta^{-1}(w) = 2n^2 - (n^2 - 1) = n^2 + 1 \) for any \(w \in W \). Put \(W_0 = \Psi^{-1}(W) \), where \(\Psi: \text{GL}_{2g}^+ \to \text{SL}_n \) is given by \(\Psi(x_1, y_1, \ldots, x_g-1, y_g-1) = [x_1, y_1] \cdots [x_{g-1}, y_{g-1}] \). Then for any \(v \in W_0 \) we have \(\dim \varphi^{-1}(v) = n^2 + 1 \), so that \(\dim R_n(\Gamma) = \dim R_n(F) + n^2 + 1 = (2g - 1)n^2 + 1 \).

The proof of the rationality of \(R_n(\Gamma) \) is based on the following assertion.

Proposition 3. There exists a nonempty \(\mathbb{Q} \)-open subset \(B \subset \text{SL}_n \) such that for any extension \(K/\mathbb{Q} \) and any point \(h \in B_k \) the variety \(W_h \) is an irreducible \(K \)-rational variety of dimension \(n^2 + 1 \).

Proof. Denote by \(B_1 \) a \(\mathbb{Q} \)-open subset of \(\text{SL}_n \) with the following properties.

1) \(B_1 \) consists of regular semisimple elements.

2) For \(h \in B_1 \) the variety \(T_h \) is irreducible, and \(W_h \) has dimension \(n^2 + 1 \).

Suppose \(h \in B_1 \). Consider the projection \(\pi: W_h \to \text{GL}_n \), \(\pi(x, y) = y \), and put \(T = \text{Im} \pi \). Let \(T^0 \) (resp. \(T^0_h \)) be the open subset of \(T \) (resp. of \(T_h \cap \text{GL}_n \)) formed by the regular semisimple elements. It is easily seen that \(T \subset T^0 \) and \(T^0 \subset T^0_h \subset \text{Im} \pi \), so that in fact \(T^0 = T^0_h \). Since obviously \(T^0 \neq \varnothing \), it follows from the irreducibility of \(T_h \) that \(T = T_h \cap \text{GL}_n \); in particular, \(T \) is open in \(T_h \).

We examine now the system (1) defining \(T_h \). From the definition of the characteristic polynomial \(f_a(\lambda) \) of a matrix \(a = (a_{ij}) \) it follows that the coefficient \(\sigma_r(a) \) of \(\lambda^{n-r} \) is, up to sign, the sum of all the principal minors of order \(r \). Expanding by elements of the first column those principal minors that contain \(a_{11} \), we obtain for \(\sigma_r(a) \) a representation of the form

\[
\sigma_r(a) = \sum_{i=1}^{n} P_{ir}a_{11} + Q_r,
\]

where

\[
P_{ir}, Q_r \in \mathcal{O} = \mathbb{K}[a_{ij}]_{i=1, \ldots, n}.
\]

Let \(a'_{ij} \) be the element in position \((i, j) \) in the matrix \(ha \). Then

\[
\sigma_r(ha) = \sum_{i=1}^{n} P'_{ir}a'_{11} + Q'_r,
\]

where the \(P'_{ir} \) and \(Q'_r \) are the polynomials obtained by substituting the \(a'_{ij} \) for the \(a_{ij} \). Using the expressions for the \(a'_{ij} \) in terms of the \(a_{ij} \), we now easily establish the existence of polynomials \(\overline{P}_{ir}, \overline{Q}_r \in \mathcal{O} \) such that

\[
\sigma_r(ha) = \sum_{i=1}^{n} \overline{P}_{ir}a_{11} + \overline{Q}_r.
\]
We see, therefore, that (1) reduces to a system of \(n - 1 \) linear equations in the elements of the first column of the matrix \(a \):

\[
\sum_{l=1}^{n} p_{lr} a_{1l} = q_r, \quad r = 1, \ldots, n - 1,
\]

where \(p_{lr}, q_r \in \mathbb{C} \).

Let \(B_2 \) be the subset of \(SL_n \) consisting of those \(h \) for which the corresponding system (2) is of rank \(n - 1 \). It is easily seen that \(B_2 \) is \(\mathbb{Q} \)-open and nonempty. We show now that the \(\mathbb{Q} \)-open subset \(B = B_1 \cap B_2 \neq \emptyset \) in \(SL_n \) has the desired property. Suppose \(h \in B \). Then in the matrix of the system (2) defining the variety \(T_h \) there exists a minor of order \(n - 1 \) identically not equal to zero. From Cramer's rule it follows that this minor is different from zero on \(T_h \) and that the coordinates \(a_{1l}, \ldots, a_{n-1} \) connected with it can be expressed in a rational fashion in terms of the others. This proves the rationality of \(T_h \), and therefore of \(T \), since \(T \) is open in \(T_h \). The rationality of \(W_h \) now follows automatically, since finding the first coordinate of the point \((x, y) \in W_h \) when the second is fixed reduces to solving the matrix equation \(xy = hyx \), which is equivalent to a linear system in the elements of the matrix \(x \). This completes the proof of Proposition 3.

There is no difficulty in completing the proof of Theorem 1. Considering "generic" \(n \times n \) matrices \(x_1, y_1, \ldots, x_{g-1}, y_{g-1} \), let \(K \) be the field generated over \(\mathbb{Q} \) by the elements of these matrices, and construct the matrix \(h = [x_1, y_1] \cdots [x_{g-1}, y_{g-1}] \in SL_n(K) \). Then the \(\mathbb{Q} \)-rational function field \(\mathbb{Q}(R_n(\Gamma)) \) is isomorphic to the \(K \)-rational function field \(K(W_{h-1}) \). Since \(h \) is a "generic" point of the group \(SL_n \) over \(\mathbb{Q} \), it lies in the \(\mathbb{Q} \)-open subset \(B \) constructed in Proposition 3; therefore, by that proposition, \(W_{h-1} \) is \(K \)-rational, i.e., the extension \(K(W_{h-1})/K \) is purely transcendental. But \(K \) is a purely transcendental extension of \(\mathbb{Q} \), and therefore the same is true of \(\mathbb{Q}(R_n(\Gamma)) \simeq K(W_{h-1}) \).

Proof of Theorem 2. There exists a commutative diagram

\[
\begin{array}{ccc}
R_n(\Gamma) & \overset{\sigma}{\longrightarrow} & X_n(\Gamma) \\
\sigma \downarrow & & \downarrow \delta \\
R_n(F) & \overset{\tau}{\longrightarrow} & X_n(F),
\end{array}
\]

in which \(\sigma \) and \(\tau \) are the natural projections of the varieties of representations onto the corresponding varieties of characters (see [2]), and \(\varphi \) and \(\delta \) are induced by the restriction. It is easily seen that the subset \(W_0 \subset R_n(F) \) of irreducible representations is a nonempty open \(\mathbb{Q} \)-defined subvariety. Let \(W \subset X_n(F) \) be an open subset contained in \(\tau(W_0) \) (clearly \(\tau^{-1}(W) \subset W_0 \)), and suppose \(w \in W \) and \(\bar{w} \in \delta^{-1}(w) \). It is easily seen that \(\sigma \) induces a bijective \(\mathbb{Q} \)-defined morphism

\[
\bar{\delta}: F = \varphi^{-1}(\bar{w}) \rightarrow \delta^{-1}(w) = D.
\]

Thus, the fibers \(F \) and \(D \) are birationally isomorphic over the field over which they are both defined.

Now let \(\rho \) be a generic point over \(\mathbb{Q} \) of the variety \(R_n(\Gamma) \); \(\omega = \sigma(\rho) \) and \(\mu = \delta(\omega) \) generic points of \(X_n(\Gamma) \) and \(X_n(F) \), respectively; and \(G = \delta^{-1}(\mu) \) a generic fiber of \(\delta \). Since condition 1) and Proposition 2 imply that \(G \) is irreducible, the field \(L = \mathbb{Q}(X_n(\Gamma)) \) is isomorphic to the rational function field \(K(G) \), where \(K = \mathbb{Q}(\mu) = \mathbb{Q}(X_n(F)) \). Clearly, there exists a preimage \(\tilde{\omega} \in \tau^{-1}(\omega) \),
\(\omega = (x_1, y_1, \ldots, x_{g-1}, y_{g-1})\), such that \(h = [x_1, y_1] \cdots [x_{g-1}, y_{g-1}] \in SL_n(K)\).

It follows from the above that \(G\) is isomorphic over \(K\) to the variety \(W_{h-1}\), which is \(K\)-rational. This gives the desired result.

Proposition 4. Suppose \(x, y \in GL_n\), with \(y\) semisimple. Then the set \(xZ(y)\) contains a regular semisimple element.

Explicit computations in each of the remaining cases yield a complete verification of 2) for \(n \leq 4\).

Remark. All the above results remain valid for a group \(\Gamma\) with \(n \geq 4\) generators \(x_1, \ldots, x_n\) and one defining relation of the form \(r = r_1[x_{n-3}, x_{n-2}][x_{n-1}, x_n]\), where \(r_1\) lies in the commutator subgroup of the free group \(F(x_1, \ldots, x_{n-4})\).

This work has been supported by the Fund for Basic Research of the Republic of Belarus.

Bibliography

Institute of Mathematics, Academy of Sciences of Belarus, Minsk

Received 10/SEPT/92

Translated by J. A. ZILBER