THE GEOMETRIC THEORY OF REPRESENTATIONS FOR THE FUNDAMENTAL GROUPS OF COMPACT ORIENTED SURFACES UDC 512.547+512.552

A. S. RAPINCHUK AND V. V. BENYASH-KRIVETS

Let Γ be a finitely generated group. It is well known (see [1]-[3]) that for an arbitrary linear algebraic group G defined over a field K, the set of all representations $\rho \colon \Gamma \to G_k$ can be identified with the set $R(\Gamma, G)_k$ of K-points of a certain K-defined variety $R(\Gamma, G)$, called the *variety of representations*. Thus the variety $R(\Gamma, G)$, a basic object in geometric representation theory, furnishes a natural parametrization of the family of all representations of Γ in G; so that by obtaining a description of $R(\Gamma, G)$ we obtain extended information on the representations of Γ .

The present note examines the case that $\Gamma = \Gamma_g$ is the fundamental group of a compact oriented surface of genus g, i.e., the group given by the copresentation

$$\Gamma_g = \langle x_1, y_1, \dots, x_g, y_g | [x_y, y_1] \cdots [x_g, y_g] = 1 \rangle$$

where $[x,y]=xyx^{-1}y^{-1}$. Here the variety $R(\Gamma,\operatorname{SL}_2(\mathbb{R}))$ of real unimodular representations comes up in Riemann surface theory; specifically, the so-called Fricke space, closely connected with the variety of moduli, is a domain on $R(\Gamma,\operatorname{SL}_2(\mathbb{R}))$ (see [4]). We give a description of the variety $R(\Gamma,\operatorname{SL}_2(\mathbb{R}))$ of n-dimensional representations and of the corresponding variety $R_n(\Gamma)=R(\Gamma,\operatorname{GL}_n)$ of n-dimensional representations and of the corresponding variety $X_n(\Gamma)$ of n-dimensional characters for the case that the ground field has characteristic 0.

For a matrix $a \in M_n$ we denote by $f_a(\lambda)$ its characteristic polynomial $f_a(\lambda) = \det(\lambda E_n - a)$, and by $\sigma_1(a), \ldots, \sigma_n(a)$ the coefficients of $f_a(\lambda)$; i.e.,

$$f_a(\lambda) = \lambda^n + \sigma_1(a)\lambda^{n-1} + \cdots + \sigma_n(a)$$
.

For $h \in SL_n$, we denote by T_h the variety of M_n defined by the system

(1)
$$\sigma_1(a) = \sigma_1(ha), \ldots, \sigma_{n-1}(a) = \sigma_{n-1}(ha).$$

Consider the following two conditions:

- 1) There exists a nonempty Zariski Q-open subset $U \subset SL_n$ such that for any $h \in U$ the variety T_h is irreducible.
- 2) For any x, $y \in GL_n$, the set xZ(y), where Z(y) is the centralizer of y in GL_n , contains a regular element (i.e., an element Z such that $\dim Z(z) = n$).

Theorem 1. Suppose conditions 1) and 2) are satisfied. Then the variety $R_n(\Gamma)$ is an (absolutely) irreducible \mathbb{Q} -rational variety, of dimension $(2g-1)n^2+1$ for g>1 and n^2+n for g=1.

Theorem 2. Under the hypothesis of Theorem 1, for g > 1 the variety $X_n(\Gamma)$ is an irreducible \mathbb{Q} -defined variety of dimension $(2g-2)n^2$. Moreover, the rational function

1991 Mathematics Subject Classification. Primary 20C99, 20F34; Secondary 20G05, 32G15.

field $\mathbb{Q}(X_n(\Gamma))$ is a purely transcendental extension of the field $\mathbb{Q}(X_n(F_{2g-2}))$, where F_{2g-2} is the free group of rank 2g-2.

Further, we show that condition 2) is "almost always" satisfied automatically; namely, it is certainly satisfied if the element y is semisimple (Proposition 4). Using this fact, we are able to verify the validity of 1) and 2) for $n \le 4$. On the other hand, for $n \le 4$ the variety $X_n(F_m)$ is rational for any m (see [7] and [8]). Thus, we obtain

Corollary. For g > 1 and $n \le 4$, the variety $X_n(\Gamma)$ is rational over \mathbb{Q} .

We proceed to the proof of the theorems. The case g=1 is easily worked out; everywhere below, therefore, g>1 and n>1. The first nontrivial fact here is the irreducibility of the variety $R_n(\Gamma)$.

We denote by F the subgroup of Γ generated by $x_1, y_1, \ldots, x_{g-1}, y_{g-1}$, and by $\varphi \colon R_n(\Gamma) \to R_n(F)$ the corresponding morphism of the varieties of representations. Since, as we know, F is a free group of rank 2(g-1) (see [5]), the variety $R_n(F)$ coincides with the product $GL_n \times \cdots \times GL_n$ (2(g-1) times), and in particular is irreducible. On the other hand, the fact that every element of SL_n is a commutator in GL_n (see [6]) implies that φ is surjective.

Proposition 1. $\varphi(V) = R_n(F)$, for any irreducible component $V \subset R_n(\Gamma)$.

Proposition 2. Suppose, for $h \in SL_n$, that the variety T_h is irreducible. Then if condition 2) is satisfied, the variety

$$W_h = \{(x, y) \in \operatorname{GL}_n \times \operatorname{GL}_n | [x, y] = h\}$$

is likewise irreducible.

Now suppose $R_n(\Gamma) = \bigcup_{i=1}^d V_i$ is a decomposition into irreducible components with d > 1. Put $U_i = V_i \setminus (\bigcup_{j \neq i} V_j)$, $i = 1, \ldots, d$, and let $U_0 = \Psi^{-1}(U)$, where U is the open set of condition 1) and $\Psi \colon \operatorname{GL}_n \times \cdots \times \operatorname{GL}_n \to \operatorname{SL}_n$ the morphism given by

$$\Psi(x_1, y_1, \ldots, x_{g-1}, y_{g-1}) = [x_1, y_1] \cdots [x_{g-1}, y_{g-1}].$$

From Proposition 1 and the irreducibility of $R_n(F)$ we obtain that the intersection $\varphi(U_1)\cap \varphi(U_2)\cap U_0$ is nonempty; let a be a point in this intersection. Then the fiber $Z=\varphi^{-1}(a)$ is isomorphic to the variety $W_{\Psi(a)}$ and therefore, in view of our constructions and Proposition 2, irreducible. It follows that $Z\subset V_{i_0}$ for some $i_0\in\{1,\ldots,d\}$. But $a=\varphi(u_1)=\varphi(u_2)$ for some $u_i\in U_i$, i=1,2, such that u_1 , $u_2\in Z$. Each of u_1 , u_2 , however, lies in just one irreducible component, so that $V_1=V_{i_0}=V_2$; and we have a contradiction.

Proof of Proposition 1. It suffices to show that any irreducible component $V \subset R_n(\Gamma)$ has a nonempty open subset V_0 such that for any point $v \in V_0$ the differential $d_v \varphi \colon T_v(V) \to T_{\varphi(v)}(R_n(F))$ is surjective. First one verifies:

Lemma 1. Let $v=(x_1,y_1,\ldots,x_g,y_g)\in R_n(\Gamma)$ be a point such that the elements x_g and y_g are regular and $\dim(Z(x_g)\cap Z(y_g))=1$. Then the mapping $d_v\varphi\colon T_v(R_n(\Gamma))\to T_{\varphi(v)}(R_n(F))$ is surjective.

Suppose now that for an irreducible component $V \subset R_n(\Gamma)$ we have $\overline{\varphi(V)} \neq R_n(F)$. Let V_1 be the open subvariety of V consisting of those points $(x_1, y_1, \ldots, x_g, y_g)$ such that x_g and y_g are regular elements; from condition 2) it follows that $V_1 \neq \emptyset$. Then, by Lemma 1, $(V_1 \subset \operatorname{GL}_n^{2g-2} \times L)$, where $L = \{(x, y) \in \operatorname{GL}_n \times \operatorname{GL}_n | x \text{ and } y \text{ are regular and } \dim(Z(x) \cap Z(y)) > 1\}$.

Lemma 2. 1) dim $L \le 2n^2 - 2(n-1)$.

- 2) For any $h \in SL_n$ the dimension of any irreducible component $T \subset W_h$ lies in the interval $n^2 + 1 \le \dim T \le n^2 + n$.
 - 3) dim $V \ge (2g-1)n^2+1$.

From parts 1) and 2) of Lemma 2 we obtain, using the theorem on the dimension of fibers of a morphism, that

$$\dim V \le 2(g-2)n^2 + n^2 + n + 2n^2 - 2(n-1) = (2g-1)n^2 - n + 2.$$

Comparing this inequality with part 3) of Lemma 2 gives $n \le 1$, a contradiction. This proves the irreducibility of $R_n(\Gamma)$. The dimension of $R_n(\Gamma)$ is easily computed by considering the morphism $\delta \colon \operatorname{GL}_n \times \operatorname{GL}_n \to \operatorname{SL}_n$, $\delta(x,y) = [x,y]$. Since δ is surjective [6], there exists, by the theorem on dimension of fibers, an open set $W \subset \operatorname{SL}_n$ such that $\dim \delta^{-1}(w) = 2n^2 - (n^2 - 1) = n^2 + 1$ for any $w \in W$. Put $W_0 = \Psi^{-1}(W)$, where $\Psi \colon \operatorname{GL}_n^{2g-2} \to \operatorname{SL}_n$ is given by $\Psi(x_1, y_1, \dots, g_{g-1}, y_{g-1}) = [x_1, y_1] \cdots [x_{g-1}, y_{g-1}]$. Then for any $v \in W_0$ we have $\dim \varphi^{-1}(v) = n^2 + 1$, so that $\dim R_n(\Gamma) = \dim R_n(F) + n^2 + 1 = (2g-1)n^2 + 1$.

The proof of the rationality of $R_n(\Gamma)$ is based on the following assertion.

Proposition 3. There exists a nonempty \mathbb{Q} -open subset $B \subset SL_n$ such that for any extension K/\mathbb{Q} and any point $h \in B_k$ the variety W_h is an irreducible K-rational variety of dimension $n^2 + 1$.

Proof. Denote by B_1 a Q-open subset of SL_n with the following properties.

- 1) B_1 consists of regular semisimple elements.
- 2) For $h \in B_1$ the variety T_h is irreducible, and W_h has dimension $n^2 + 1$.

Suppose $h \in B_1$. Consider the projection $\pi \colon W_k \to \operatorname{GL}_n$, $\pi(x,y) = y$, and put $T = \overline{\operatorname{Im} \pi}$. Let T^0 (resp. T_h^0) be the open subset of T (resp. of $T_h \cap \operatorname{GL}_n$) formed by the regular semisimple elements. It is easily seen that $T \subset T_h$ and $T^0 \subset T_h^0 \subset \operatorname{Im} \pi$, so that in fact $T^0 = T_h^0$. Since obviously $T^0 \neq \emptyset$, it follows from the irreducibility of T_h that $T = T_k \cap \operatorname{GL}_n$; in particular, T is open in T_h .

We examine now the system (1) defining T_h . From the definition of the characteristic polynomial $f_a(\lambda)$ of a matrix $a=(a_{ij})$ it follows that the coefficient $\sigma_r(a)$ of λ^{n-r} is, up to sign, the sum of all the principal minors of order r. Expanding by elements of the first column those principal minors that contain a_{11} , we obtain for $\sigma_r(a)$ a representation of the form

$$\sigma_r(a) = \sum_{l=1}^n P_{lr} a_{l1} + Q_r,$$

where

$$P_{lr}, Q_r \in \mathcal{O} = K[a_{ij}]_{\substack{i=1,\ldots,n\\j=2,\ldots,n}}$$
.

Let a'_{ij} be the element in position (i, j) in the matrix ha. Then

$$\sigma_r(ha) = \sum_{l=1}^n P'_{lr} a'_{l1} + Q'_r,$$

where the P'_{lr} and Q'_{r} are the polynomials obtained by substituting the a'_{ij} for the a_{ij} . Using the expressions for the a'_{ij} in terms of the a_{ij} , we now easily establish the existence of polynomials \overline{P}_{lr} , $\overline{Q}_{r} \in \mathscr{O}$ such that

$$\sigma_r(ha) = \sum_{l=1}^n \overline{P}_{lr} a_{l1} + \overline{Q}_r.$$

We see, therefore, that (1) reduces to a system of n-1 linear equations in the elements of the first column of the matrix a:

(2)
$$\sum_{l=1}^{n} p_{lr} a_{l1} = q_r, \qquad r = 1, \dots, n-1,$$

where p_{lr} , $q_r \in \mathscr{O}$.

Let B_2 be the subset of SL_n consisting of those h for which the corresponding system (2) is of rank n-1. It is easily seen that B_2 is \mathbb{Q} -open and nonempty. We show now that the \mathbb{Q} -open subset $B=B_1\cap B_2\neq\varnothing$ in SL_n has the desired property. Suppose $h\in B$. Then in the matrix of the system (2) defining the variety T_h there exists a minor of order n-1 identically not equal to zero. From Cramer's rule it follows that this minor is different from zero on T_h and that the coordinates $a_{i_11},\ldots,a_{i_{n-1}1}$ connected with it can be expressed in a rational fashion in terms of the others. This proves the rationality of T_h , and therefore of T, since T is open in T_h . The rationality of W_h now follows automatically, since finding the first coordinate of the point $(x,y)\in W_h$ when the second is fixed reduces to solving the matrix equation xy=hyx, which is equivalent to a linear system in the elements of the matrix x. This completes the proof of Proposition 3.

There is now no difficulty in completing the proof of Theorem 1. Considering "generic" $n \times n$ matrices $x_1, y_1, \ldots, x_{g-1}, y_{g-1}$, let K be the field generated over $\mathbb Q$ by the elements of these matrices, and construct the matrix $h = [x_1, y_1] \cdots [x_{g-1}, y_{g-1}] \in \mathrm{SL}_n(K)$. Then the $\mathbb Q$ -rational function field $\mathbb Q(R_n(\Gamma))$ is isomorphic to the K-rational function field $K(W_{h^{-1}})$. Since h is a "generic" point of the group SL_n over $\mathbb Q$, it lies in the $\mathbb Q$ -open subset B constructed in Proposition 3; therefore, by that proposition, $W_{h^{-1}}$ is K-rational, i.e., the extension $K(W_{h^{-1}})/K$ is purely transcendental. But K is a purely transcendental extension of $\mathbb Q$, and therefore the same is true of $\mathbb Q(R_n(\Gamma)) \simeq K(W_{h^{-1}})$.

Proof of Theorem 2. There exists a commutative diagram

$$R_n(\Gamma) \xrightarrow{\sigma} X_n(\Gamma)$$
 $\emptyset \downarrow \delta$
 $R_n(F) \xrightarrow{\tau} X_n(F),$

in which σ and τ are the natural projections of the varieties of representations onto the corresponding varieties of characters (see [2]), and φ and δ are induced by the restriction. It is easily seen that the subset $W_0 \subset R_n(F)$ of irreducible representations is a nonempty open \mathbb{Q} -defined subvariety. Let $W \subset X_n(F)$ be an open subset contained in $\tau(W_0)$ (clearly $\tau^{-1}(W) \subset W_0$), and suppose $w \in W$ and $\tilde{w} \in \delta^{-1}(w)$. It is easily seen that σ indices a bijective \mathbb{Q} -defined morphism

$$\tilde{\sigma}$$
: $F = \varphi^{-1}(\tilde{w}) \to \delta^{-1}(w) = D$.

Thus, the fibers F and D are birationally isomorphic over the field over which they are both defined.

Now let ρ be a generic point over \mathbb{Q} of the variety $R_n(\Gamma)$; $\omega = \sigma(\rho)$ and $\mu = \delta(w)$ generic points of $X_n(\Gamma)$ and $X_n(F)$, respectively; and $G = \delta^{-1}(\mu)$ a generic fiber of δ . Since condition 1) and Proposition 2 imply that G is irreducible, the field $L = \mathbb{Q}(X_n(\Gamma))$ is isomorphic to the rational function field K(G), where $K = \mathbb{Q}(\mu) = \mathbb{Q}(X_n(F))$. Clearly, there exists a preimage $\tilde{\omega} \in \tau^{-1}(\omega)$,

 $\tilde{\omega}=(x_1,y_1,\ldots,x_{g-1},y_{g-1})$, such that $h=[x_1,y_1]\cdots[x_{g-1},y_{g-1}]\in \mathrm{SL}_n(K)$. It follows from the above that G is isomorphic over K to the variety $W_{h^{-1}}$, which is K-rational. This gives the desired result.

Proposition 4. Suppose x, $y \in GL_n$, with y semisimple. Then the set xZ(y) contains a regular semisimple element.

Explicit computations in each of the remaining cases yield a complete verification of 2) for $n \le 4$.

Remark. All the above results remain valid for a group Γ with $n \ge 4$ generators x_1, \ldots, x_n and one defining relation of the form $r = r_1[x_{n-3}, x_{n-2}][x_{n-1}, x_n]$, where r_1 lies in the commutator subgroup of the free group $F(x_1, \ldots, x_{n-4})$.

This work has been supported by the Fund for Basic Research of the Republic of Belarus.

BIBLIOGRAPHY

- V. P. Platonov and A. S. Rapinchuk, Algebraic groups and number theory, "Nauka", Moscow, 1991. (Russian)
- 2. V. P. Platonov, Problems in Algebra, No. 4, "Universitet-skoe", Minsk, 1989, pp. 36-40. (Russian)
- 3. V. P. Platonov and V. V. Benyash-Krivets, Trudy Mat. Inst. Steklov. 183 (1990), 169-178; English transl. in Proc. Steklov Inst. Math. 1991, no. 4 (183).
- 4. William Abikoff, *The real analytic theory of Teichmüller space*, Lecture Notes in Math., vol. 820, Springer-Verlag, Berlin, 1980.
- 5. R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin, 1977.
- 6. R. C. Thompson, Trans. Amer. Math. Soc. 101 (1961), 16-33.
- 7. Edward Formanek, Linear and Multilinear Algebra 7 (1979), 203-212.
- 8. ____, J. Algebra **62** (1980), 304-319.

Institute of Mathematics, Academy of Sciences of Belarus, Minsk

Received 10/SEPT/92

Translated by J. A. ZILBER