CHARACTER RINGS OF REPRESENTATIONS OF FINITELY GENERATED GROUPS

UDC $512.547+512.552$

V. P. PLATONOV AND V. V. BENYASH-KRIVETS

Abstract

Let $\Gamma=\left\langle g_{1}, g_{2}, \ldots, g_{m}\right\rangle$ be a group with m generators. For an arbitrary yield K and a linear algebraic K-group G, the set of all representations $\operatorname{Hom}(\Gamma, G(K)$) can be identified in a natural way with the K-points of a certain algebraic variety. For any $g \in \Gamma$ we define a function τ_{g} on $\operatorname{Hom}(\Gamma, G(K))$ with values in K : $$
\tau_{g}(\rho)=\operatorname{tr}(\rho(g)), \quad \rho \in \operatorname{Hom}(\Gamma, G(K))
$$ where tr X denotes the trace of a matrix X. Consider the ring $T(\Gamma, G(K))$ generated by the functions τ_{g}; it is called character ring of the representations of Γ in $G(K)$. Our main goal is to answer the question of whether the rings $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ and finitely generated. The answer is given in Theorems 1 and 2.

Bibliography: 9 titles.

§1. Introduction and formulation of the basic results

Let $\Gamma=\left\langle g_{1}, g_{2}, \ldots, g_{m}\right\rangle$ be an arbitrary group with m generators. For a fixed K and a linear algebraic K-group G the collection $\operatorname{Hom}(\Gamma, G(K))$ of all representations can be identified in a natural way with the K-points of a certain algebraic variety. For each $g \in \Gamma$ we define the K-valued function τ_{g} on $\operatorname{Hom}(\Gamma, G(K))$ by

$$
\tau_{g}(\rho)=\operatorname{tr}(\rho(g)), \quad \rho \in \operatorname{Hom}(\Gamma, G(K))
$$

where $\operatorname{tr} X$ denotes the trace of a matrix X.
Consider the ring $T(\Gamma, G(K))$ generated by the functions τ_{g} (it would be more precise to write τ_{g}^{G} instead of τ_{g}, but each time it will be clear from the context which group the representations are into). It is called the ring of characters of representations of the group Γ in $G(K)$. This ring was first studied for the case $G(K)=\mathrm{SL}_{2}(\mathbb{C})$ by Vogt [9] and Fricke [4] almost a century ago. At the present time the ring $T\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right)$ is usually called the Fricke character ring for the group Γ. A survey of results on the ring $T\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right)$ and its applications to various problems in group theory and linear differential equations is contained in Magnus' paper [6]. Interesting applications in threedimensional topology are given in the recent important paper [3].

Here we consider a more general but also classical situation; the character rings $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ for arbitrary and special n-dimensional representations. One of the central points here is the question of whether the rings $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ are finitely generated. In 1972

[^0]Horowitz [5] showed that the Fricke character ring $T\left(\Gamma, \mathrm{SL}_{2}(\mathbb{C})\right)$ is finitely generated. The question of whether the rings $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ are finitely generated was discussed by Bass and Lubotzky in [2].

The solution of the problem of whether $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ are finitely generated is contained in the following two theorems.

Theorem 1. Suppose that the group Γ has an infinite cyclic factor group. Then the following statements hold for a field K of zero characteristic:

1) for all $n \geq 2$ the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is not finitely generated;
2) for $n \geq 1$ the ring $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ is not finitely generated;
3) for $n=3$ the ring $T\left(\Gamma, \mathrm{SL}_{3}(K)\right)$ is finitely generated for any group Γ.

The case of a field K of positive characteristic is considered in the second theorem. Note at once that for a finite field K the ring $T(\Gamma, G(K))$ is finitely generated for any group Γ. This follows easily from the fact that Γ has only finitely many subgroups of fixed index. Denote by $T_{K}\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T_{K}\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ the K-algebra or characters for the corresponding representations.

Theorem 2. Let K be an infinite field of characteristic $p>0$. Then the following statements hold:

1) for any group Γ the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is finitely generated for $n<p$, and the ring $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ is finitely generated for $n<2 p$;
2) if the group Γ has an infinite cyclic factor group, then the K-algebras $T_{K}\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T_{K}\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ are not finitely generated for $n \geq p$ and $n \geq 2 p$, respectively.

We direct attention to the statement 2) in Theorem 2, which shows that the results of Procesi [8] on invariants of a finite collection of $n \times n$ matrices do not extend to the case of fields of arbitrary positive characteristic.

A brief exposition of the results in this paper was published in [1].

§2. Rings of characters of representations over fields of characteristic zero

We remark first that for any subgroup $H \subset \mathrm{GL}_{n}(K)$ the ring $T(\Gamma, H)$ is a homomorphic image of the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$, in particular, the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is infinitely generated if the ring $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ is infinitely generated. Similarly, if $\varphi: \Gamma_{1} \rightarrow \Gamma_{2}$ is an epimorphism, then it induces an epimorphism $\varphi^{*}: T\left(\Gamma_{1}, G(K)\right) \rightarrow T\left(\Gamma_{2}, G(K)\right)$, where $\varphi^{*}\left(\tau_{g}\right)=\tau_{\varphi(g)}, g \in \Gamma_{1}$. In particular, $T\left(\Gamma_{1}, G(K)\right)$ is infinitely generated if $T\left(\Gamma_{2}, G(K)\right)$ is infinitely generated. Obviously, among groups with m generators it is the free group that has the largest character ring.

To prove the theorems stated above we need the following lemmas.
Lemma 1. Suppose that the field K is infinite, $\Gamma=\langle g\rangle$ is an infinite cyclic group, and $K_{1} \supset K$. Then the ring $T\left(\Gamma, \mathrm{SL}_{n}(K)\right.$) (respectively, $T\left(\Gamma, \mathrm{GL}_{n}(K)\right.$)) is finitely generated if and only if the ring

$$
T\left(\Gamma, \mathrm{SL}_{n}\left(K_{1}\right)\right) \quad\left(\text { respectively }, T\left(\Gamma, \mathrm{GL}_{n}\left(K_{1}\right)\right)\right)
$$

is finitely generated.
Proof. Suppose, for example, that $\tau_{g^{i}},-l \leq i \leq l$, is a finite system of generators of the ring $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$. Then for any given $m \in \mathbb{Z}$ we have the
equality

$$
\begin{equation*}
\tau_{g^{m}}=P\left(\tau_{g^{-1}}, \ldots, \tau_{g^{\prime}}\right) \tag{1}
\end{equation*}
$$

where $P \in \mathbb{Z}\left[y_{-l}, \ldots, y_{l}\right]$. Since Γ is a cyclic group, (1) is equivalent to the equality

$$
\begin{equation*}
\operatorname{tr} X^{m}=P\left(\operatorname{tr} X^{-l}, \ldots, \operatorname{tr} X^{l}\right) \tag{2}
\end{equation*}
$$

where $X=\left(x_{i j}\right)$ is an arbitrary matrix in $\mathrm{SL}_{n}(K)$. The equality (2) is equivalent in turn to the condition $Q\left(x_{i j}\right)=0$, where Q is a regular function on $\mathrm{SL}_{n}(K)$. Since K is an infinite field,

$$
Q\left(x_{i j}\right)=(\operatorname{det} X-1) Q_{1}\left(x_{i j}\right),
$$

from which it is clear that Q vanishes on $\mathrm{SL}_{n}\left(K_{1}\right)$. Consequently, (2) holds for any matrix X in $\mathrm{SL}_{n}\left(K_{1}\right)$, and this means that the functions $\tau^{g^{i}},-l \leq i \leq l$, generate the ring $T\left(\Gamma, \mathrm{SL}_{n}\left(K_{1}\right)\right)$. The converse assertion in the lemma follows from our remarks above.

Lemma 2. If the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right.$) (respectively, $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$) is not finitely generated for some n, then for any $m>n$ the ring $T\left(\Gamma, \mathrm{GL}_{m}(K)\right)$ (respectively, $T\left(\Gamma, \mathrm{SL}_{m}(K)\right)$) is infinitely generated.

Proof. Assume that $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is not finitely generated, and for some $m>n$ the ring $T\left(\Gamma, \mathrm{GL}_{m}(K)\right)$ is generated by the functions $\tau_{\gamma_{i}}, 1 \leq i \leq s$, $\gamma_{i} \in \Gamma$. We consider the standard imbedding of $\mathrm{GL}_{n}(K)$ in $\mathrm{GL}_{m}^{\prime}(K)$:

$$
\varepsilon: X \mapsto\left(\begin{array}{cc}
X & 0 \\
0 & E_{m-n}
\end{array}\right)
$$

The ring $T\left(\Gamma, \varepsilon\left(\mathrm{GL}_{n}(K)\right)\right)$ is an epimorphic image of the ring $T\left(\Gamma, \mathrm{GL}_{m}(K)\right)$, and hence is generated by the functions $\tau_{\gamma_{i}}^{\prime}, 1 \leq i \leq s$ (a single prime will mark the functions in $T\left(\Gamma, \varepsilon\left(\mathrm{GL}_{n}(K)\right)\right.$, and a double prime the functions in $\left.T\left(\Gamma, \mathrm{GL}_{n}(K)\right)\right)$. Thus, for any $g \in \Gamma$ we must have the equality

$$
\begin{equation*}
\tau_{g}^{\prime}=P\left(\tau_{\gamma_{1}}^{\prime}, \ldots, \tau_{\gamma_{s}}^{\prime}\right) \tag{3}
\end{equation*}
$$

where $P \in \mathbb{Z}\left[y_{1}, \ldots, y_{s}\right]$. Since $\gamma_{\gamma}^{\prime}=\tau_{\gamma}^{\prime \prime}+m-n$ for any $\gamma \in \Gamma$, the equality (3) can be written in the form

$$
\begin{equation*}
\tau_{\gamma}^{\prime \prime}=P_{1}\left(\tau_{\gamma_{1}}^{\prime \prime}, \ldots, \tau_{\gamma_{s}}^{\prime \prime}\right)+l, \quad l \in \mathbb{Z} \tag{4}
\end{equation*}
$$

where $P_{1} \in \mathbb{Z}\left[y_{1}, \ldots, y_{s}\right]$ is a polynomial without free term. We show that l is divisible by n. Taking the identity representation, we have from (4) that

$$
n=P_{1}(n, \ldots, n)+l
$$

from which it is clear that $l=r n, r \in \mathbb{Z}$. Since $\tau_{e}^{\prime \prime}=n$, where e is the identity of the group Γ, it follows that $l=r \cdot \tau_{e}^{\prime \prime}$. It now follows from (4) that the functions $\tau_{e}^{\prime \prime}, \tau_{\gamma_{1}}^{\prime \prime}, \ldots, \tau_{\gamma_{s}}^{\prime \prime}$ generate the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$, which contradicts our assumption that $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is not finitely generated. The lemma is proved.

Lemma 3. Suppose that Γ is an infinite cyclic group. Then for a field K of characteristic zero the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is not finitely generated, for all $n \geq 2$.

Proof. Assume the contrary: some finite collection of functions $\tau_{g^{i}},-l \leq$ $i \leq l$, generates the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$. Then for any $m>l$ we must have the equality

$$
\begin{equation*}
\tau_{g^{m}}=\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1} \ldots i_{s}} \tau_{g^{i_{1}} \cdots \tau_{g^{i_{s}}}} \tag{5}
\end{equation*}
$$

where $-l \leq i_{j} \leq l, j=1, \ldots, s, a_{i_{1} \ldots i_{s}} \in \mathbb{Z}$. Since Γ is an infinite cyclic group, (5) is equivalent to the equality

$$
\begin{equation*}
\operatorname{tr} X^{m}=\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1}} \cdots i_{s} \operatorname{tr} X^{i_{1}} \cdots \operatorname{tr} X^{i_{s}} \tag{6}
\end{equation*}
$$

where $X=\left(x_{i j}\right)$ is an arbitrary matrix in $\mathrm{GL}_{n}(K)$. Lemma 1 enables us to take X to be a "general" matrix with independent elements $x_{i j}$. After multiplying both sides of (6) by a suitable power of $\operatorname{det} X$, we get two polynomials in $x_{i j}$ that take the same values on $\mathrm{GL}_{n}(K)$, and are thus equal. Since the polynomial on the left-hand side is homogeneous, the polynomial on the right-hand side must also be homogeneous, and it follows from a comparison of powers that $i_{1}+\cdots+i_{s}=m$ for each tuple (i_{1}, \ldots, i_{s}). Since $m>l$, it follows that $s \geq 2$. Setting $\vec{X}=E_{n}$ in (6), we get that

$$
n=\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1} \cdots i_{s}} n^{s} .
$$

The last equality is impossible because the right-hand side is divisible by n^{2} but the left-hand side is not. Lemma 3 is proved.

Lemma 4. Suppose that Γ is an infinite cyclic group, and K is a field of characteristic 0 . Then for $n \geq 4$ the ring $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ is not finitely generated.

Proof. By Lemma 2, it suffices to consider the case $n=4$. Assume that for some l the functions $\tau_{g^{i}},-l \leq i \leq l$, generate the ring $T\left(\Gamma, \mathrm{SL}_{4}(K(x))\right)$, where x is a transcendental element over K. Then for any $m>l$ we must have the equality

$$
\begin{equation*}
\tau_{g^{m}}=\sum_{i=-l}^{l} a_{i} \tau_{g^{i}}+\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1}, \cdots i_{s}} \tau_{g^{t_{l}}} \cdots \tau_{g^{i} s}, \tag{7}
\end{equation*}
$$

where $-l \leq i_{j} \leq l, j=1, \ldots, s, a_{i}$, and $a_{i_{1} \cdots i_{s}} \in \mathbb{Z}$. Consider the representation

$$
\begin{equation*}
\rho: g \mapsto X=\operatorname{diag}\left(x, x, x^{-1}, x^{-1}\right) . \tag{8}
\end{equation*}
$$

Obviously, $\operatorname{tr} X^{d}=2\left(x^{d}+x^{-d}\right)$ for any $d \in \mathbb{Z}$. For the representation (8) we get from (7) that

$$
\begin{align*}
2\left(x^{m}+x^{-m}\right)= & \sum_{i=-l}^{l} 2 a_{i}\left(x^{i}+x^{-i}\right) \\
& +\sum_{\left(i_{1}, \ldots, i_{s}\right)} 2^{s} a_{i_{1}, \cdots i_{s}}\left(x^{i_{i}}+x^{-i_{1}}\right) \cdots\left(x^{i_{s}}+x^{-i_{s}}\right) . \tag{9}
\end{align*}
$$

Since $m>l$, the equality (9) can be written in the form

$$
P(x)+P\left(\frac{1}{x}\right)=0,
$$

where $P \in \mathbb{Z}[x]$, and $P \not \equiv 0$, since the coefficient of x^{m} in P is nonzero. The impossibility of (9^{\prime}) is obvious enough. By Lemma 1, this contradiction completes the proof.

Lemma 5. For any $g, h \in \Gamma$ the following relation holds in $T\left(\Gamma, \mathrm{SL}_{3}(K)\right)$:

$$
\begin{equation*}
\tau_{g^{2} h}=\tau_{g} \tau_{g h}-\tau_{g^{-1}} \tau_{h}+\tau_{g^{-1} h} . \tag{10}
\end{equation*}
$$

Proof. We consider an arbitrary matrix $A \in \mathrm{SL}_{3}(K)$ and the roots α_{1}, α_{2}, and α_{3} of its characteristic polynomial. By the Hamiltonian-Cayley theorem, A satisfies the equation

$$
A^{3}-A^{2} \operatorname{tr} A+A\left(\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}\right)-E=0 .
$$

Note that

$$
\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}=\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}+\frac{1}{\alpha_{3}}=\operatorname{tr} A^{-1},
$$

because $\alpha_{1} \alpha_{2} \alpha_{3}=1$. Thus, we have the equality

$$
\begin{equation*}
A^{3}-A^{2} \operatorname{tr} A+A \operatorname{tr} A^{-1}-E=0 . \tag{11}
\end{equation*}
$$

Let us multiply both sides of (11) by $A^{-1} B$ from the right, where $B \in \mathrm{SL}_{3}(K)$, and take the trace:

$$
\begin{equation*}
\operatorname{tr} A^{2} B=\operatorname{tr} A \operatorname{tr} A B-\operatorname{tr} A^{-1} \operatorname{tr} B+\operatorname{tr} A^{-1} B . \tag{12}
\end{equation*}
$$

The equality (12) holds for any matrices $A, B \in \mathrm{SL}_{3}(K)$, and it immediately yields the equality (10).

The latter is often more convenient to use in the form

$$
\begin{equation*}
\tau_{t g h}=\tau_{g} \tau_{t h}-\tau_{g^{-1}} \tau_{t g^{-1} h}+\tau_{i g^{-1} h}, \tag{13}
\end{equation*}
$$

which is obtained from (10) by replacing h by $g^{-1} h t$. In the last two lemmas the group $\Gamma=\left\langle g_{1}, \ldots, g_{m}\right\rangle$ is assumed to be free. For any arbitrary freely reduced word $W \in \Gamma$ we set $s_{i}(W)=\left(n_{2}, \ldots, n_{s}\right)$, where n_{1}, \ldots, n_{s} are all the exponents with which the generators g_{i} appears in W, and $d_{i}(W)=$ $\left|n_{1}\right|+\cdots+\left|n_{s}\right|$. If g_{i} does not appear in W, then we set $s_{i}(W)=(0)$ and $d_{i}(W)=(0)$.

Lemma 6. Let $g=g_{r}$ be some generator of Γ and $W=A B$ an element of Γ such that $d_{i_{1}}(A)=d_{i_{2}}(A)=\cdots=d_{i_{k}}(A)=0$ for some i_{1}, \ldots, i_{k} (the tuple $\left(i_{1}, \ldots, i_{k}\right)$ can also be empty). Then $\tau_{W}=P\left(\tau_{W_{1}}, \ldots, \tau_{W_{s}}\right)$ where $P \in \mathbb{Z}\left[y_{1}, \ldots, y_{s}\right], W_{i}=A_{i} B_{i}, d_{i_{1}}\left(A_{i}\right)=\cdots=d_{i_{k}}\left(A_{i}\right)=0, B_{i} \in\{B, e\}$, $d_{g}\left(A_{i}\right) \leq 2,1 \leq i \leq s$.

The proof of the lemma is by induction on $d_{g}(A)$. If $d_{g}(A) \leq 2$, then there is nothing to prove. Suppose that the lemma is valid for all W such that $d_{g}(A)<n$. Consider $W=A B, d_{g}(A)=n$. Let $s_{g}(A)=\left(n_{1}, \ldots, n_{r}\right)$.

Assume that for some i, say $i=1$, we have that $\left|n_{1}\right| \geq 2$. For definiteness suppose that $n_{1} \geq 2$. Then $W=U_{1} g^{n_{1}} U_{2} B$, and, using (13), we have that

$$
\tau_{W}=\tau_{U_{1} g\left(g^{n_{1}-1} U_{2} B\right)}=\tau_{g} \tau_{U_{1} g^{n_{1}-1} U_{2} B}-\tau_{g^{-1}} \tau_{U_{1} g^{n_{1}-2} U_{1} B}+\tau_{U_{1} g^{n_{1}-3} U_{2} B} .
$$

Since $d_{g}\left(U_{1} g^{n_{1}-1} U_{2}\right)<d_{g}\left(U_{1} g^{n_{1}} U_{2}\right)=d_{g}(A), d_{g}\left(U_{1} g^{n_{1}-2} U_{2}\right)<d_{g}(A)$, and $d_{g}\left(U_{1} g^{n_{1}-3} U_{2}\right)<d_{g}(A)$, the required assertion follows by induction.

Suppose now that $\left|n_{i}\right| \leq 1$, i.e., $n_{i} \in\{-1,-1\}, 1 \leq i \leq r$, and $n_{i}=n_{i+1}=$ ε for some $i<r$. This means that $A=U_{1} g^{\varepsilon} U_{2} g^{\varepsilon} U_{3}$, and $d_{g}\left(U_{2}\right)=0$. By (13),

$$
\tau_{W}=\tau_{U_{1}\left(g^{\varepsilon} U_{1}\right)\left(g^{\varepsilon} U_{3} B\right)}=\tau_{g^{\varepsilon} U_{2}} \tau_{U_{1} g^{8} U_{3} B}-\tau_{U_{2}^{-1} g^{-s}} \tau_{U_{1} U_{2}^{-1} U_{3} B}+\tau_{U_{1} U_{2}^{-1} g^{-\varepsilon} U_{2}^{-1} U_{3} B} .
$$

We set $A_{1}=g^{\varepsilon} U_{2}, A_{2}=U_{1} g^{\varepsilon} U_{3}, A_{3}=g^{-\varepsilon} U_{2}^{-1}, A_{4}=U_{1} U_{2}^{-1} U_{3}, A_{5}=$ $U_{1} U_{2}^{-1} g^{-8} U_{2}^{-1} U_{3}$. Since $d_{g}\left(A_{i}\right)<d_{g}(A), 1 \leq i \leq 5$, the assertion of the lemma is valid for τ_{W} in view of the induction hypothesis.

It remains to consider the last possible case: $n_{i} \in\{-1,-1\}, 1 \leq i \leq r$, $n_{i+1}=-n_{i}$ for all $i=1, \ldots, r-1$. Since $d_{g}(A)=n>2$, it follows that $r>2$ and A can be written in the form

$$
A=U_{1} g^{\varepsilon} U_{2} g^{-\varepsilon} U_{3} g^{\varepsilon} U_{4}, \quad \text { where } d_{g}\left(U_{1}\right)=d_{g}\left(U_{2}\right)=d_{p}\left(U_{3}\right)=0
$$

Then, by (13),

$$
\begin{aligned}
\tau_{W}= & \tau_{A B}=\tau_{U_{2} g^{\varepsilon}\left(U_{2} g^{-\varepsilon} U_{3} g^{\varepsilon} U_{4} B\right)} \\
= & \tau_{g^{\varepsilon}} \tau_{U_{1} U_{2} g^{-\varepsilon} U_{3} g^{\ell} U_{4} B}-\tau_{g^{-s}} \tau_{U_{1} g^{-\varepsilon} U_{2} g^{-\varepsilon} U_{3} g^{\varepsilon} U_{4} B} \\
& +\tau_{U_{1} g^{-2 \varepsilon} U_{2} g^{-\varepsilon} U_{3} g^{\varepsilon} U_{4} B} .
\end{aligned}
$$

In turn,

$$
\begin{aligned}
\tau_{U_{1} g^{-2 \varepsilon} U_{2} g^{-\varepsilon} U_{3} g^{-\varepsilon} U_{4} B}= & \tau_{\left(U_{1} g^{-\varepsilon}\right)\left(g^{-i} U_{2}\right)\left(g^{-\varepsilon} U_{3} g^{\varepsilon} U_{4} B\right)} \\
= & \tau_{g^{-\varepsilon} U_{2}} \tau_{U_{1} g^{-2 \varepsilon} U_{3} g^{\varepsilon} U_{4} B}-\tau_{U_{2}^{-1} g^{\varepsilon}} \tau_{U_{1} g^{-\varepsilon} U_{2}^{-1} U_{3} g^{\varepsilon} U_{4} B} \\
& +\tau_{U_{1} g^{-\varepsilon} U_{2}^{-1} g^{\epsilon} U_{2}^{-1} U_{3} g^{\varepsilon} U_{4} B} .
\end{aligned}
$$

Thus,

$$
\tau_{w}=\tau_{g^{\varepsilon}} \tau_{A_{1} B}-\tau_{g^{-\varepsilon}} \tau_{A_{2} B}+\tau_{g^{-\varepsilon} U_{2}} \tau_{A_{3} B}-\tau_{g^{\varepsilon} U_{2}^{-1}} \tau_{A_{4} B}+\tau_{A_{5} B},
$$

where $A_{1}=U_{1} U_{2} g^{-\varepsilon} U_{3} g^{\varepsilon} U_{4}, A_{2}=U_{1} g^{-\varepsilon} U_{2} g^{-\varepsilon} U_{4}, A_{3}=U_{1} g^{-2 \varepsilon} U_{3} g^{\varepsilon} U_{4}$, $A_{4}=U_{1} g^{-\varepsilon} U_{2}^{-1} U_{3} g^{\varepsilon} U_{4}, A_{5}=U_{1} g^{-\varepsilon} U_{2}^{-1} g^{\varepsilon} U_{2}^{-1} U_{3} g^{\varepsilon} U_{4}$. Obviously, $d_{g}\left(A_{1}\right)<$ $d_{g}(A)$ and $d_{g}\left(A_{4}\right)<d_{g}(A)$. Further, although $d_{g}\left(A_{2}\right)=d_{g}\left(A_{3}\right)=d_{g}\left(A_{5}\right)=$ $d_{g}(A)$, the equalities $s_{g}\left(A_{2}\right)=(-\varepsilon,-\varepsilon, \cdots), s_{g}\left(A_{3}\right)=(-2 \varepsilon, \varepsilon, \cdots)$, and $s_{g}\left(A_{5}\right)=(-\varepsilon, \varepsilon, \varepsilon, \cdots)$ imply, as already shown above, that the statement of the lemma is valid for the functions $\tau_{A_{2} B}, \tau_{A_{3} B}, \tau_{A_{5} B}$. The statement of the lemma is thereby obtained for τ_{W} by using the induction hypothesis for the functions $\tau_{A_{1} B}$ and $\tau_{A_{4} B}$. The lemma is proved.

Lemma 7. Suppose that $W \in \Gamma$ is an arbitrary word. If $d_{1}(W)+\cdots+d_{i}(W) \leq$ n, then $\tau_{W}=P\left(\tau_{i W_{1}}, \ldots, \tau_{W_{s}}\right), P \in \mathbb{Z}\left[y_{1}, \ldots, y_{s}\right]$, and all the $W_{j}, 1 \leq j \leq s$, have the property that

$$
d_{1}\left(W_{j}\right)+\cdots+d_{i}\left(W_{j}\right)+d_{i+1}\left(W_{j}\right) \leq 3 n
$$

Proof. We employ induction on $d_{i+1}(W)$. If $d_{i+1}(W)=0$, then the assertion of the lemma is obvious. Suppose that the assertion is valid for all $W \in \Gamma$ such that $d_{1}(W)+\cdots+d_{i}(W) \leq n, d_{i+1}(W)<r$. Assume now that $d_{i+1}(W)=$
r. The word W can be written in the form $W=U_{1} g_{i_{1}}^{n_{1}} \cdots U_{k} g_{i_{k}}^{n_{k}} U_{k+1}$, $1 \leq i_{j} \leq i, j=1, \ldots, k, d_{s}\left(U_{m}\right)=0,1 \leq s \leq i, 1 \leq m \leq k+1$. Since $\tau_{W}=\tau_{U_{k+1}} u_{1} g_{i_{1}}^{n_{1}} \cdots U_{k}, g_{i_{k}}^{n_{k}}$, we can assume at once that $U_{k+1}=l$. Further, $d_{1}(W)+\cdots+d_{i}(W)=\left|n_{1}\right|+\cdots+\left|n_{k}\right| \leq n$. Consequently, $k \leq n$. If $d_{i+1}\left(U_{j}\right) \leq 2$ for all $j=1, \ldots, k$, then $d_{i+1}(W) \leq 2 k \leq 2 n$ and $d_{1}(W)+\cdots+$ $d_{i}(W)+d_{i+1}(W) \leq n+2 n=3 n$. Therefore, we assume that for some j, say for $j=1$, we have that $d_{i+1}\left(U_{1}\right)>2$. Setting $A=U_{1}, B=g_{n_{1}}^{n_{1}} U_{2} \cdots U_{k} g_{i_{k}}^{n_{k}}$, and $g=g_{i+1}$, we have from Lemma 6 that $\tau_{W}=P\left(\tau_{W_{1}}, \ldots, \tau_{W_{s}}\right)$, where $P \in \mathbb{Z}\left[y_{1}, \ldots, y_{s}\right], W_{j}=A_{j} B_{j}, d_{1}\left(A_{j}\right)=\cdots=d_{i}\left(A_{j}\right)=0, B_{j}$ is equal either to B or to e, and $d_{i+1}\left(A_{j}\right) \leq 2, j=1,2, \ldots, s$. If $B_{j}=e$, then $d_{1}\left(W_{j}\right)+\cdots+d_{i}\left(W_{j}\right)+d_{i+1}\left(W_{j}\right) \leq 2<3 n$. If $B_{j}=B$, then $d_{i+1}\left(W_{j}\right)=$ $d_{i+1}\left(A_{j} B\right) \leq d_{i+1}(W)-d_{i+1}\left(U_{1}\right)+2<d_{i+1}(W)$, and $d_{1}\left(W_{j}\right)+\cdots+d_{i}\left(W_{j}\right) \leq n$. By the induction hypothesis, the assertion of the lemma is valid for all the functions $\tau_{W}, 1 \leq j \leq s$, and hence also for τ_{W}. Lemma 7 is proved.

Proof of Theorem 1. Assertions 1 and 2 of the theorem follow immediately from Lemmas 3 and 4. Assertion 3 will now be proved with the help of Lemmas 6 and 7. It suffices to consider the case of a free group Γ. If $W \in \Gamma$, then, by Lemma $6, \tau_{W}=P\left(\tau_{W_{1}}, \ldots, \tau_{W_{s}}\right), P \in \mathbb{Z}\left[y_{1}, \ldots, y_{s}\right], d_{1}\left(W_{j}\right) \leq 2, j=$ $1,2, \ldots, s$. Thus, we can assume that $d_{1}(W) \leq 2$. It follows from Lemma 7 that

$$
\begin{gathered}
\tau_{W}=F\left(\tau_{V_{1}}, \ldots, \tau_{V_{r}}\right), \quad F \in \mathbb{Z}\left[y_{1}, \ldots, y_{r}\right], \\
d_{1}\left(V_{i}\right)+d_{2}\left(V_{i}\right)+\cdots+d_{m}\left(V_{i}\right) \leq 2 \cdot 3^{m-1}, \quad 1 \leq i \leq r .
\end{gathered}
$$

It remains to see that $d_{1}\left(V_{i}\right)+\cdots+d_{m}\left(V_{i}\right)$ is the length of the word V_{i}, and there are finitely many words of bounded length in Γ. Accordingly, the functions $\tau_{W_{1}}, \ldots, \tau_{W_{s}}$, where W_{1}, \ldots, W_{s} are all distinct words of length not exceeding $2 \cdot 3^{m-1}$, generate the ring $T\left(\Gamma, \mathrm{SL}_{3}(K)\right)$. The proof of Theorem 1 is complete.

§3. Rings of characters of representations over fields of positive characteristic

In the case of fields of positive characteristic the situation becomes somewhat more complicated and requires a more detailed investigation. The contrast in comparison with fields of characteristic zero manifests itself, for example, in the fact that the K-algebra $T_{K}\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ for a field of characteristic zero is always finitely generated, while for a field of positive characteristic this algebra can fail to be finitely generated.

We introduce the following notation: $C_{r}=\{1,2, \ldots, r\}, D_{r}=\left\{\sigma: C_{r} \rightarrow\right.$ $C_{p} \mid \sigma$ is injective $\}$.

Lemma 8. Suppose that k is a field of characteristic $p>0$, and (n_{1}, \ldots, n_{r}) is an r-tuple of integers such that $r \leq p$ and $n_{1}+n_{2}+\cdots+n_{r} \not \equiv 0(\bmod p)$. Then the rational function

$$
\sum_{\sigma \in D_{r}} t_{\sigma(1)}^{n_{1}} t_{\sigma(2)}^{n_{2}} \cdots t_{\sigma(r)}^{n_{r}} \in K\left(t_{1}, \ldots, t_{p}\right)
$$

is not equal to zero.

Proof. The rational function being considered does not change if the numbers in the r-tuple $\left(n_{1}, \ldots, n_{r}\right)$ are permuted, therefore, it can be assumed without loss of generality that the numbers n_{1}, \ldots, n_{r} are arranged in nondecreasing order, i.e.,

$$
n_{1}=n_{i_{0}}=n_{i_{0}+1}=\cdots=n_{i_{1}}<n_{i_{1}+1}=\cdots=n_{i_{2}}<\cdots<n_{i_{s-1}+1}=\cdots=n_{i_{s}}=n_{r}
$$

It is easy to see that each of the s groups of equal exponents contain less than p exponents, because otherwise we would have that $r=p$ and $n_{1}=\cdots=n_{p}$, i.e., $n_{1}+\cdots+n_{p} \equiv 0(\bmod p)$ despite the condition of the lemma. In other words, $i_{k}-i_{k-1}+1<p$ for $k=1, \ldots, s$. Suppose now that $\varphi, \sigma \in D_{r}$. We consider two monomials:

$$
t_{\sigma(1)}^{n_{1}} \cdots t_{\sigma(r)}^{n_{r}}=t_{\sigma\left(i_{0}\right)}^{n_{i}} \cdots t_{\sigma\left(i_{1}\right)}^{n_{i}} \cdots t_{\sigma\left(i_{s-1}+1\right)}^{n_{s_{s}}} \cdots t_{\sigma\left(i_{s}\right)}^{n_{i_{s}}}
$$

and

$$
t_{\varphi(1)}^{n_{1}} \cdots t_{\sigma(r)}^{n_{r}}=t_{\varphi\left(i_{0}\right)}^{n_{i_{1}}} \cdots t_{\varphi\left(i_{s-1}+1\right)}^{n_{s_{s}}} \cdots t_{\varphi\left(i_{s}\right)}^{n_{s_{s}}}
$$

These monomials are equal if and only if the same variables appear in them with equal exponents, and this holds if and only if the numbers $\varphi\left(i_{j-1}+1\right), \ldots, \varphi\left(i_{j}\right)$ are a permutation of the numbers $\sigma\left(i_{j-1}+1\right), \ldots, \sigma\left(i_{j}\right)$ for all $j=1, \ldots, s$. Consequently, for any given monomial in the sum $\sum_{\sigma \in D_{r}} t_{\sigma(1)}^{n_{j}} \cdots t_{\sigma(r)}^{n_{r}}$ there are exactly

$$
\begin{equation*}
c\left(n_{1}, \ldots, n_{r}\right)=\left(i_{2}-i_{0}+1\right)!\left(i_{2}-i_{1}+1\right)!\cdots\left(i_{s}-i_{s-1}+1\right)! \tag{14}
\end{equation*}
$$

monomials equal to it in the sum (including the one being considered). The number $c_{\left(n_{1}, \ldots, n_{r}\right)}$ does not depend on the choice of the monomial, but is completely determined by the r-tuple $\left(n_{1}, \ldots, n_{r}\right)$. Obviously, $c_{\left(n_{1}, \ldots, n_{2}\right)} \not \equiv$ $(\bmod p)$, because $i_{j}-i_{j-1}+1<p$ for $1 \leq j \leq s$. Consequently, the rational function under consideration is not equal to zero. Lemma 8 is proved.

Theorem 2. Let K be an infinite field of characteristic $p>0$. Then the following statements are valid:

1) for any group Γ the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is finitely generated for $n<p$, and the ring $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ is finitely generated for $n<2 p$;
2) if the group Γ has an infinite cyclic factor group, then the K-algebras $T_{K}\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ and $T_{K}\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ are not finitely generated for $n \geq p$ and $n \geq 2 p$, respectively.

Proof. The first assertion of Theorem 2, namely that $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is finitely generated, can be derived from the following result of Procesi [7]. Let X_{1}, \ldots, X_{m} be a collection of m general matrices in $M_{n}(\Omega)$, where $\Omega \supset K$. Procesi proved that the ring A generated by all the functions $\sigma_{i}(W), i=$ $1,2, \ldots, n$, where σ_{i} denotes the i th coefficient of the characteristic polynomial of the matrix W, and W runs through all the monomials in X_{1}, \ldots, X_{m}, is finitely generated. It follows from the condition $n<p$ that every $\sigma_{i}(W)$ can be expressed in the form of a polynomial in $\operatorname{tr} W, \operatorname{tr} W^{2}, \ldots, \operatorname{tr} W^{i}$ with coefficients in the field $\mathbb{Z} / p \mathbb{Z}$. Hence, A can be generated by finitely many of the traces $\operatorname{tr} W_{1}, \ldots, \operatorname{tr} W_{d}$. With respect to the system of generators g_{1}, \ldots, g_{m} of the group Γ we can assume without loss of generality that together with each g_{i} it also contains g_{i}^{-1}. Using the specialization $X_{i} \rightarrow g_{i}$, we get that the functions $\tau_{\bar{W}_{1}}, \ldots, \tau_{\bar{W}_{d}}$ generate the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$, where \bar{W} denotes the
element of Γ obtained from the monomial W as a result of the specialization $X_{i} \rightarrow g_{i}$.

If in the case $n<p$ the ring $T\left(\Gamma, \mathrm{GL}_{n}(K)\right)$ is finitely generated, then so is $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$. But if $p \leq n<2 p$, then we make the following observation. Let X be an arbitrary matrix in $\mathrm{SL}_{n}(K)$. In this case if $p \leq i<n$, then $\sigma_{i}(X)=$ $(1 / \operatorname{det} X) \sigma_{n-i}\left(X^{-1}\right)=\sigma_{n-i}\left(X^{-1}\right)$. Since $n-i<p$, it follows that $\sigma_{n-i}\left(X^{-1}\right)$ can be expressed in terms of $\operatorname{tr} X^{-1}, \operatorname{tr} X^{-2}, \ldots, \operatorname{tr} X^{i-n}$ which coefficients in the field $\mathbb{Z} / p \mathbb{Z}$. By the theory of Procesi, this implies that $T\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ is finitely generated for $p \leq n<2 p$.

The main weight in the proof of Theorem 2 lies in the second assertion. According to Lemma 2, it suffices to prove this assertion for $n=p$. Moreover, it can be assumed that $\Gamma=\langle g\rangle$ is an infinite cyclic group. We assume the contrary, i.e., suppose that the algebra $T_{K}\left(\Gamma, \mathrm{GL}_{p}(K)\right)$ has a finite system of generators $\tau_{g^{i}},-l \leq i \leq l$. Then for $m \in \mathbb{Z}, m>l,(m, p)=1$, we have the equality

$$
\begin{equation*}
\tau_{g^{m}}=\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1} \cdots i_{s}}(m) \tau_{g^{i_{1}}} \cdots \tau_{g^{i_{s}}}, \tag{15}
\end{equation*}
$$

where $-l \leq i_{j} \leq l, j=1,2, \ldots, s$, and $a_{i_{1} \cdots i_{s}}(m) \in K$. As in the proof of Lemma 3, we note that $i_{1}+i_{2}+\cdots+i_{s}=m$; in particular, $s \geq 2$ in each tuple $\left(i_{1}, \ldots, i_{s}\right)$. If for an arbitrary diagonal matrix $t=\operatorname{diag}\left(t_{1}, \ldots, t_{p}\right)$ we consider the representation $g \mapsto t$, then (15) gives us the equality

$$
\begin{equation*}
t_{1}^{m}+\cdots+t_{p}^{m}=\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1} \cdots i_{s}}(m) \prod_{j=1}^{s}\left(t_{1}^{i_{j}}+\cdots+t_{p}^{i_{j}}\right) \tag{16}
\end{equation*}
$$

which hold for all $t_{1}, \ldots, t_{p} \in K^{*}$.
The product $\prod_{j=1}^{s}\left(t_{1}^{i_{j}}+\cdots+t_{p}^{i_{j}}\right)$ can be transformed into the following form:

$$
\begin{equation*}
\prod_{j=1}^{s}\left(t_{1}^{i_{j}}+\cdots+t_{p}^{i_{j}}\right)=\sum_{\left(n_{1}, \ldots, n_{r}\right)} b_{n_{1} \cdots n_{r}}^{\left(i_{1}, \ldots, i_{s}\right)}\left(\sum_{\sigma \in D_{r}} t_{\sigma(1)}^{n_{1}} \cdots t_{\sigma(r)}^{n_{r}}\right) \tag{17}
\end{equation*}
$$

where $n_{1}+n_{2}+\cdots+n_{r}=m$ and the summation is over the unordered collections $\left(n_{1}, \ldots, n_{r}\right)$. The equality (17) is obtained as follows: if we multiply out the parentheses on the left-hand side of (17), then we get a sum of p^{r} monomials, where together with a monomial $t_{t_{1}}^{n_{1}} \cdots t_{i_{r}}^{n_{r}}$ the sum contains all monomials of the form $t_{\sigma(1)}^{n_{1}} \cdots t_{\sigma(r)}^{n_{r}}, \sigma \in D_{r}$; thus, we get the sum

$$
\sum_{\sigma \in D_{r}} t_{\sigma(1)}^{n_{1}} \cdots t_{\sigma(v)}^{n_{r}}
$$

and the integer $b_{n_{1} \cdots n_{r}}^{\left(i_{1}, \ldots, i_{s}\right)}$ shows how many sums like this accumulate after multiplying out the parentheses on the left-hand side of (17).

By Lemma 5, none of the sums $\sum_{\sigma \in D_{r}} t_{\sigma(1)}^{n_{1}} \cdots t_{\sigma(r)}^{n_{r}}$ is equal to zero, and the monomials in it differ from those of the analogous sum for another tuple $\left(m_{1}, \ldots, m_{q}\right) \neq\left(n_{1}, \ldots, n_{r}\right)$. The left-hand side of (17) is a sum of p^{s} monomials of the form $t_{i_{1}}^{m_{1}} \cdots t_{i_{r}}^{n_{r}}$, while the right-hand side is a sum of
$\sum_{\left(n_{1}, \ldots, n_{r}\right)} b_{n_{1} \ldots n_{r}}^{\left(i_{1}, \ldots, i_{s}\right)}\left|D_{r}\right|$ such monomials. Consequently,

$$
\sum_{\left(n_{1}, \ldots, n_{r}\right)} b_{n_{1} \cdots n_{r}}^{\left(i_{1}, \ldots, i_{s}\right)}\left|D_{r}\right|=p^{\varepsilon} .
$$

Since $\left|D_{r}\right|=p!/(p-r)!$ and $s \geq 2$, it follows that

$$
\begin{equation*}
\sum_{\left(n_{1}, \ldots, n_{r}\right)} b_{\left.n_{1} \cdots n_{r}\right)}^{\left(i_{1}, \ldots, i_{s}\right)} \frac{(p-r)!}{(p-1)!} \equiv 0 \quad(\bmod p) \tag{18}
\end{equation*}
$$

We transform (16), using (17):

$$
\begin{align*}
t_{1}^{m}+\cdots+t_{p}^{m} & =\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1}, \ldots, i_{s}}(m) \prod_{j=1}^{s}\left(t_{1}^{i_{j}}+\cdots+t_{p}^{i_{j}}\right) \\
& =\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1} \cdots i_{s}}(m)\left(\sum_{\left(n_{1}, \ldots, n_{r}\right)} b_{n_{1} \cdots n_{r}}^{\left(i_{1}, \ldots, i_{s}\right)}\left(\sum_{\sigma \in D_{r}} t_{\sigma(1)}^{N_{1}} \cdots t_{\sigma(r)}^{n_{r}}\right)\right) \\
& =\sum_{\left(n_{1}, \ldots, n_{r}\right)} c_{n_{1}} \cdots n_{r}\left(\sum_{\sigma \in D_{r}} t_{\sigma(1)}^{n_{1}} \cdots t_{\sigma(r)}^{n_{r}}\right) \tag{19}
\end{align*}
$$

where

$$
c_{n_{1} \cdots n_{r}}=\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1} \cdots i_{s}}(m) b_{n_{1} \cdots n_{r}}^{\left\langle i_{s}, \ldots, i_{s}\right\rangle} \in K .
$$

Using (18), we get the following equality:

$$
\begin{aligned}
\sum_{\left(n_{1}, \ldots, n_{r}\right)} c_{n_{1} \cdots n_{r}} \frac{(p-1)!}{(p-r)!} & =\sum_{\left(n_{1}, \ldots, n_{r}\right)\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1}, \ldots i_{s}}(m) b_{n_{1}, \ldots, n_{r}}^{\left(i_{1}, \ldots, i_{3}\right)} \frac{(p-1)!}{(p-r)!} \\
& =\sum_{\left(i_{1}, \ldots, i_{s}\right)} a_{i_{1} \cdots i_{s}}(m)\left(\sum_{\left(n_{1}, \ldots, n_{s}\right)} b_{\left.n_{1}, \ldots, n_{r}\right)}^{\left(i_{1}, \ldots, i_{s}\right)} \frac{(p-1)!}{(p-r)!}\right) \\
& =0
\end{aligned}
$$

On the other hand, it follows from (19) that $c_{m}=1$, while all $c_{n_{1}, \ldots, n_{r}}=0$ for $r \geq 2$. Consequently,

$$
\sum_{\left(n_{1}, \ldots, n_{r}\right)} c_{n_{1} \cdots n_{r}} \frac{(p-1)!}{(p-r)!}=1 \cdot \frac{(p-1)!}{(p-1)!}=1
$$

This contradiction completes the proof that the algebra $T_{K}\left(\Gamma \mathrm{GL}_{p}(K)\right)$ is infinitely generated.

To conclude the proof of Theorem 2 it must be shown that the algebra $T_{K}\left(\Gamma, \mathrm{SL}_{2 p}(K)\right)$ is not finitely generated. In view of Lemma 1 the field K can be assumed to be algebraically closed. We consider the imbedding

$$
\varepsilon: \mathrm{GL}_{p}(K) \rightarrow \mathrm{SL}_{2 p}(K), \quad X \mapsto\left(\begin{array}{cc}
X & 0 \\
0 & \alpha E_{p}
\end{array}\right)
$$

where $\alpha=(\operatorname{det} X)^{-1 / p}$. Since $\operatorname{tr} X=\operatorname{tr} \varepsilon(X)$, it follows that $T_{K}\left(\Gamma \mathrm{GL}_{p}(K)\right)=$ $T_{K}\left(\Gamma, \varepsilon\left(\mathrm{GL}_{p}(K)\right)\right)$. And since $T_{K}\left(\Gamma, \varepsilon\left(\mathrm{GL}_{p}(K)\right)\right)$ is a homomorphic image of the K-algebra $T_{K}\left(\Gamma, \mathrm{SL}_{2 p}(K)\right.$) and (as we already showed) the K-algebra $T_{K}\left(\Gamma, \mathrm{GL}_{p}(K)\right)$ is not finitely generated, the K-algebra $T_{K}\left(\Gamma, \mathrm{SL}_{2 p}(K)\right)$ is also not finitely generated. By Lemma $2, T_{K}\left(\Gamma, \mathrm{SL}_{n}(K)\right)$ is not finitely generated, for all $n \geq 2 p$. Theorem 2 is proved.

Bibliography

1. V. P. Platonov and V. V. Benyash-Krivets, Character rings of n-dimensional representations of finitely generated groups, Dokl. Akad. Nauk SSSR 289 (1986), 293-297; English transl. in Soviet Math. Dokl. 34 (1987).
2. Hyman Bass and Alexander Lubotzky, Automorphisms of groups and of schemes of finite type, Israel J. Math. 44 (1983), 1-22.
3. Marc Culler and Peter B. Shalen, Varieties of group representations and splittings of 3 -manifolds, Ann. of Math. (2) 117 (1983), 109-146.
4. Robert Fricke and Felix Klein, Vorlesungen über die Theorie der automorphen Funktionen. Vol. I, Teubner, Leipzig, 1897.
5. Robert D. Korowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972), 635-649.
6. W. Magnus, The uses of 2 by 2 matrices in combinatorial group theory: a survey, Resultate Math. 4 (1981), 171-192.
7. Claudio Procesi, Finite dimensional representations of algebras, Israel J. Math. 19 (1974), 169-182.
8. ._The invariant theory of $n \times n$ matrices, Advances in Math. 19 (1976), 306-381.
9. H. Vogt, Sur les invariants fondamentaux des equations différentielles linéaires du second ordre, Ann. Sci. École Norm. Sup. (3) 6 (1889), suppl., S.3-S.71.

Translated by H. H. McFADEN

[^0]: 1980 Mathematics Subject Classification (1985 Revision). Primary 20C99, 20K05, $20 \mathrm{G15}$.

