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NUMERICAL MODELLING OF EQUILIBRIUM CAPILLARY
SURFACES: SOME METHODS AND RESULTS"

Viktor K. Polevikov

Computational Mathematics Department
Belarusian State University
4 F. Skaryna Ave., Minsk 220050, Belarus
E-mail: polevikov@fpm.bsu.unibel.by

Abstract. A new iteration-difference approach is proposed for numerical solving flat and
axisymmetric problems on equilibrium shapes of a capillary surface called the tangential
method or the T-method in virtue of constructional features. This method possesses a high
order of approximation on a nonuniform grid, simple algorithm, improved agreement between
an iteration solution and an exact solution of a differential problem. A condition for iteration
convergence is obtained within the framework of a linear theory. As a result of tests, it is
revealed that the proposed method is more economic as against other iteration-difference
schemes and much exceeds them in computational stability. It is found that it adequately
responds to physical collapse of equilibrium shapes, i. e. it can be adopted to investigate
stability of equilibrium states of a capillary surface.

INTRODUCTION

Interest increased for the last 25—30 years in the study of equilibrium states of
capillary liquid is mainly conditioned by applications occurred in space technology and
hydromechanics of magneto- and electroconducting liquids. Just as the majority of practically
important problems with a free boundary, the problems on equilibrium shapes of a capillary
surface, as a rule, have a complex nonlinear statement. In the general case, we are dealing with
the thermohydrodynamic problem, whose unknown solution is being sought in the domain
with a preliminarily unknown boundary that is determined by an unknown solution.
Exhaustive reviews of the theoretical methods for investigation of equilibrium capillary
surfaces are presented in [1, 2]. These reviews show that methods for numerical modelling of
doubly-connected, disconnected as well as simply-connected strongly curved surfaces in
essence are not developed in modern computational hydrodynamics. The field of application
of the existing approaches is limited mainly by problems with a simply-connected slightly
curved surface.

In [3—6), the iteration-difference approach is developed. In [2], it is presented as a
«rather universal because it is suitable for constructing equally both axisymmetric simply-
and doubly-connected equilibrium surfaces and cylindrical ones (flat problem)”. Also, it
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should be added that it is efficient in the case of strongly curved surfaces and is easily
extended to the class of disconnected surfaces.

The present work proposes a new method for computation of capillary surfaces. In
virtue of constructional features, it is called the tangential method or the T-method. This
method is shown to be more economic and much less sensitive to surface deformation in high
fields as against the previous approaches. It can also serve for investigation of an equilibrium
state as it adequately responds to a physical crisis of equilibrium shapes.

PARAMETRIC FREE SURFACE EQUATIONS

General equations. Consider an equilibrium capillary surface T" of a viscous
incompressible magnetic fluid (MF) that contacts a nonmagnetic gas medium and is acted on
by gravitational and magnetic forces f . Steady-state motion of such a fluid both inside a
volume and on a free surface is governed by the equations:

Vp=-p(v-V)v+nViv+f, f=pg+p,MVH; V.v=0 (h

where p is the fluid pressure; p the density; v the velocity vector; 1= const the dynamic
viscosity; g the acceleration of gravity; |, the magnetic constant; M = M(H, 0) the fluid

magnetization; H the magnetic field intensity; © the temperature. The isothermal fluid
density p is assumed constant. In the case of nonisothermal fluid density, use is made of

Boussinesque’s approximation, taking into account the dependence p(0) only in the right

term f .

Boundary conditions on the free surface are obtained from the general balance
equations for normal and shear stresses with regard to capillary and magnetic pressure jump.
If viscous stresses are neglected in the external (gas) medium, then the balance equation for
normal stresses on the surface I" assumes the form

1 H Y Jv
=K ——,| M=2 | +2n—" 2
P~ Py 2“0( H] n In (2)

where p, = const is the external pressure; G the surface tension coefficient; K the sum of
principal surface curvatures that takes a positive value if the surface is convex; H, and v, the
normal vector components of magnetic intensity and velocity (v, =0 on the equilibrium

surface).

)Axisymmetric surface. If T is the surface of revolution, then its shape is determined
by the equilibrium meridional line. Introduce the cylindrical coordinates R, Z by bringing the
OZ axis into coincidence with the symmetry axis and by directing it opposite to the gravity
vector. Let S be an arc length of an unknown equilibrium line that ranges from S =0 to
S =1. The equilibrium line shape will be described by the parametric functions R(S), Z(S).
Then n=(-Z’, R"), t=(R’,Z’) are the vectors of the normal and tangent to the equilibrium
line in the R, Z plane (prime means differentiation with respect to S'). Note that the tangent
vector t is oriented in the direction of increasing S . The surface curvature is calculated by
the formula K =0(RZ’) /(RR’) where we choose ¢ =-1 if while moving along the



equilibrium line in the direction of increasing § fluid remains on the right, and ¢ =1 if fluid

remains on the left.
By means of simple manipulations with Eq. (1) with regard to the equilibrium
condition v, =v-n=0, 0on the surface I' we have

2 ’
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where v and v, are the tangential and azimuthal velocity components, and
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is the vorticity. Hence, for any point R(S), Z(S) of the free surface we find

p =I1+const,
(3)

1, R, 1 O(Rw) , i
M=-tov?+{|p=v?-n— _oeZ’ \dS+u. | MaH
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By eliminating the pressure p from Eqgs (2), (3), we obtain a parametric differential
equation for the axisymmetric surface I"

Z"=RF; 0<S<lI (4)
where

zZ’ ] HY
, ¥Y=II+— M2 =2
4 2%( Hj 1
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on

F=0Y¥Y/0+const—

The natural condition R’>+Z’*=1 serves as one more equation. By using
differentiation, it can be replaced by R” =—Z'F . For the natural condition in this case not to
be violated, it should be satisfied, at least, at one valueof S,e.g.at S=0or S=1.

Cylindrical surface (flat problem). In the case of the flat problem, a cylindrical
equilibrium surface is determined by the equilibrium line of cross-section. Introduce into the
cross-section plane the Cartesian coordinates X,Y by directing the OY axis opposite to the
vector g. In these coordinates K = 0Y”/ X' =—06X"1Y" where X =X(5) and Y =Y(S)

are the unknown parametric fuctions describing the shape of the equilibrium line. By analogy
with the axisymmetric case, we arrive at the equations

Y”=XF, X"=-Y'F; 0<8§<l;

F=0¥/c+const, ¥ M+ (MH"T mL
= o + const , = — — =-2n—=,
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whose solution requires the condition X’* + ¥’ =1 to be satisfied.

The obtained differential equations are supplemented with the boundary conditions of
the first and second kinds as well as with the non-local (integral) condition of fluid volume
conservation. By boundary conditions can be understood either conditions when fluid contacts
a solid wall specified by wall geometry and an assigned wetting angle, or symmetry
conditions.

TEST PROBLEMS

To test algorithms two hydrostatics problems on axially symmetric equilibrium shapes
of a simply-connected capillary surface were chosen. These are:

(1) problem on a drop adjacent to a horizontal rotating plate in a gravity field;

(2) problem on an isolated MF drop in a high uniform magnetic field.

The first of them is the classical problem of capillary hydrostatics [1, 2, 5, 7] and the second is
the known problem of MF statics [3, 6, 8, 9].

Problem 1. Place the origin of coordinates on the plate surface, namely, in the middle
of the drop base, and let an arc length take a value S =0 at the drop apex (i. e. at R=0) and
S =1 at the point where the meridian contacts the plane Z =0. Since the magnetic forces are
absent in equation (4), we have ¥ =I1=-pg[Z-Z(0)]+ p(osz /2 where ® is the angular

rotation velocity of a drop. So, the equations for a drop surface are obtained as

’

2
R =—-7F. 72"=RF;, F=0|-L572+P2 R |_Z | const; 0<S<I (5)
o 20 R

Boundary conditions follow from the symmetry conditions at S =0 and from the
conditions when fluid contacts the solid wall at S =1:

R(0)=0, R'(O)=1, Z'(0)=0; Z()=0, R()=cosa, Z'(I)=¢dsina (6)

where o is the wetting (contact) angle. Assuming that the drop volume V is assigned, it can
be determined as a volume of a body of revolution:

!
V:—znq)jZRR'dS (7)
0

Thus, the mathematical statement of the problem for R(S) and Z(S) consists of

differential Egs (5), boundary conditions (6), and integral condition (7). The adopted direction
of increasing S owes us to choose ¢ =-1 if a drop is adjacent to the plate from above

(sessile drop) and ¢ =1 if a drop is adjacent to the plate from below (pendent drop).



Problem 2. Consider an MF drop not contacting a solid wall and acted on by a high
uniform magnetic field under zero-gravity in the state of magnetic saturation. Assume that the

vector of the field intensity is collinear to the OZ symmetry axis. Then f = uolé VH =0,

H, =+HR’ and it should be obviously assumed in Eq. (4) that ¥ = uol\ng’z /2 where M

is the fluid saturation magnetization. Considering that a drop is symmetric relative to the
equatorial plane Z =0, we restrict ourselves to the half-space Z2>0. As in Problem 1, choose
the point S =0 on the OZ axis and the point S$=1, on the plane Z =0. The choice is
consistent with ¢ =—1. Hence, the drop shape is described by the equations

ﬁ2 ’
R”"=-Z'F, Z"=R'F; F:——LR’Z—Z—+const; 0<S<l! (8)
20 R

Boundary conditions are formulated with regard to the drop symmetry:
RO)Y=2'(0)=2Z()=R'()=0, R(O)=1, Z'(})=-1 9

The mathematical model is closed by an expression that relates the solution to the drop
volume V' :

!
V=4an[ZRR'dS (10)
0

CHANGE OF VARIABLES

The specific feature of the parametric statement is that the length, [, of the
equilibrium line, i. e. the domain of definition of the problem, is beforehand unknown. This
causes great difficulties for numerical solving. A procedure of nondimensionalizing is an
important element for constructing algorithms of the iteration-difference approach. This
procedure allows us to move the unknown length into the equations and make computations
on a fixed interval [0, 1].

Choose [ as a characteristic dimension and introduce dimensionless variables

s=S/l, r=R/l, z=2Z/1 (1)
Problem 1. In new variables, problem (5)—(7) takes the form:

r"==z(f+0), Z"=r'(f+0);
(12)

f = 0(-BoL’z+PLr*)-z"/r; 0<s<]1;

r0) =0, r(O)=1 z(00=0,
(13)
Z()=0, r’(1)=cos(pa), z’(1)=sin(da);



1 -1/3
L = [—an)J zrr’dS] (14)
0

where Bo=pgV**/c is the Bond number that characterizes the gravitational-to-capillary
force ratio; P =pw’V /(20) is the parameter having a meaning of the centrifugal-to-capillary
force ratio; L=1 /V'?: C is the constant not yet defined. To define the constant C, write
down one of Egs (12) as (rz") =rr’[¢(-Bo L[*z+PL’r*)+ C]. Then having integrated it
on the interval [0, 1] with regard to conditions (13) and (14), we obtain:

2sinoe 1 Bo
C = ——PLF D |- ——.
¢( r(l) 2 " ()] n Lri(1) (15

Problem 2. Now formulate problem (8)—(10) in new variables:

r'==z(f+C), 2"=r'(f+0); f:——WLr'z—Z—,; O<s<l; (16)
r
r0)=0, r'O=1, Z/(0)=0, z()=0, r'(H=0, Z’()=-1 (7

-1/3

1 -1/3 1
L=(4n.[zrr'ds] :[—ZRJz’rz ds] (18)
0 0

where W =p,M>V"?/(20) is the dimensionless parameter that characterizes the ratio of a

magnetic pressure jump on a free surface to a capillary jump; L= 1/V'"?. The dependence of
the constant C on a solution is defined similarly as in Problem I:

2 1 73
C:rz(l)[~r(1)+WL-([rr ds]. (19)

It should be noted that the main objective to use change of variables (11) is that we
want to obtain an explicit stable formula for correction of the dimensionless length L while
solving the nonlinear problem on free surface equilibrium in iterations. This is achieved by the
integral condition that in Problems 1 and 2 reduces to (14) and (18), respectively, and 1s
convenient for recalculation of the length L in each iteration of the algorithm of successive
refinement of an unknown boundary.

Since in the algorithm of the iteration-difference method we seek for the solution r(s) ,

z(s) that obeys the unit length of the equilibrium line of the free surface but not the assigned
fluid volume, as the initial statement of the problem requires, usually the variables

F=R/V" 7=2z/V" nondimensionalized by the volume V are used to analyze the result
obtained. A transition from variables (11) to them is made by simple recalculation: ¥ =r- L,
z=zL.



ITERATION-DIFFERENCE SCHEMES

Let us formulate a two-dimensional problem on the equilibrium shape of a capillary
surface in the following general form:

x"+y F=0, y"-x'F=0; 0<s<l; (20)

x(0)=a,, y()=b,
(21
x’(0)=cosy,, y(0)=siny,, x'(1)=cosy, y’(1) =sin vy,

where x(s) and y(s) are the unknown parametric  functions; F=f+C;
f=f(x,y,x",y’, L) is the assigned function; C and L are the constants being the
functionals of the known form of the solution; a,, Yo, b, ¥, are the predetermined
constants. Expressions for f and C can also contain functions of solution, whose analytical

form is unknown but their numerical values are determined by solving some additional
problem, e. g. problem on a magnetic field distribution or a hydrodynamic process in an MF
volume. In the case of the flat problem, appearing here x and y are the dimensionless

Cartesian coordinates of a surface, and in the case of the axisymmetric problem by them are
understood the cylindrical coordinates r, z.

The identity x”* + y’* =1 is the natural property of the parametric equations x(s),
y(s). From system (20) it can be easily obtained that if this equality is obeyed at some one
value of s, then it is also valid for all s€[0,1]. In virtue of this, when problem (20), (21) is

solved, any of the last four conditions of (21) can be neglected. In addition, one of the
remaining three conditions was formally needed to define the dependence of the constant C

on a solution.
Let us construct a difference scheme of the second-order approximation on the

uniform grid {s, =i-h 1 i=0,LK, N; h=1/N) for problem (20), (21) by designating a
difference solution by the same letters as the exact solution:

A (x,y, F)I, =x,,+y. F =0,

Ay, )l =y;, —x, F,=0 i=1LN-1;
(22)
h .
X, = ay, X; y =COSY, +§FN siny,;

§

, h
Vio = SINY, +'2‘F0 cosYy, Yy =b

A

where



E:fi+c’ fi:f(-x,"y,"-XO}yo'aL)s izl,N“l,

s

fo :f(ao’yo’COS'Yo’Sin’Yo’L); Iy :f(xN’b1’00571’5in71’L);

X, =X, —x)lh, x;, =0 -x_)/h,

i+1 i i

x, =(x

St

i+]

-x,_)/(2h), Xy = (X, —xE,,.)/h.

To solve nonlinear difference problem (22), consider two two-layer iteration schemes:

_1_( n+l __ on
xfx,i xfx,i

YA (X, YL FDIL, =0, i=1,N-1,

(23)
n+l n+l h n .
Xy =aq, xE‘N:cosy,+5FNsmyl;
1 n+l n n n n .
_(yiy,i_yss,i)“*'Az(x YU FDIL =0, i=1,N-1,
T
(24)
n+l _ : h n n+l _
Yo "SmYo'*'EFo cosY,, Yy =b
and
xn+]_xn
S L=yl F', i=1,N-1;
T ' s,
(25)
n+l n+l h n s
Xy =ay,, X;y :cosyl+—2~FN siny,;
ynH_yn
A S Sf’::_x:l En’ lzl,N—l,
T s
(26)

143 : h h n
v = siny, +5F0 cosY,, yu' =b,

where n=0,1,2,K is the iteration number; T > 0 is the relaxation parameter; F" = f" +C";
fr= Gy syl L LY.

Both scheme (23), (24) and scheme (25), (26) are realized in each iteration by means
of the elimination procedure applied to each of problems (23)—(26). As a result, new iteration
approximations x"*' and y"'

Scheme (23), (24) was successfully used to compute equilibrium shapes of simply
connected [3, 6] and doubly-connected [4, 10—12] surfaces both in the presence of

gravitational, centrifugal and magnetic forces and in their absence under zero-gravity. By

are determined.



using this scheme, we managed for the first time to numerically solve the problem of capillary
hydrostatics with an essentially disconnected free surface, namely, the problem on equilibrium
states of a magnetic fluid seal when acted on by an external pressure drop [13]. Scheme (25),
(26) was adopted to investigate equilibrium states of a drop rotating in a gravitational field

[5].

TANGENTIAL METHOD (T-METHOD)

Introduce into our consideration a new unknown B(s) being an angle between the
tangent to the equilibrium line x(s), y(s) and the Ox axis. Bearing in mind that x” = cosf,
y’ = sinf3, problem (20), (21) can be reformulated as

B'=F, BO) =17, B =7v,;

x'=cosf, x(0)=a,; 27
y =sinf, y()=b,.

In such a statement, the identity x> + y’? =1 is satisfied irrespective of boundary conditions.
Assuming that the conditions B(0) =7, and B(1) =y, have been already used to describe the
constant C, it is enough to leave only one of them in problem (27).

On the nonuniform grid {s, =s,_, +h | i=1,2K,N; 5=0, 5 = 1} for problem
(27) we shall consider a difference scheme of the fourth-order approximation:

B—B’Al 1 1 ’ ’
PimPu g | @ ==(F_ +F)-—h(f/-f);
h,» i 2( i-1 r) 12 l(fl fll)

1

t

X, - xr—l

1 1
=X, O, X(B’F)|i='2'(“i-1+ui)+1_2hi(Fi vi—F_vi);

(28)
Yi =Y 1 1
—_—h——: Y, O, YR, P :5("1’-1 +Vi)—1—2'hi(Fi w,—F_yu,);

i

i=,N; By ="Yo, By =7Y1: X =4ao; yy =b
where
F=f+C, f=f(xyuvl),

of | Of  3f . of

9 v——L Fyv+——Fu, wu=cosP, v=sinf.
L ey P g



If in expressions for @,,X.,Y, the h-containing addends are omitted, then the obtained

1

system will be of the second-order approximation with respect to problem (27).
In view of (28), the iteration algorithm for computation of free surface coordinates will
be constructed as

B?H = B:l:ll _hm CD:IH + (1_ T)(BT - B?H +hi+1 (D:lu)s

(29)
i=N-1,N-2K,1; "=y, =Y,
=X e X@B™L FL, i=1L2K LN xt =a, (30)
y =y b YR F L, i=N-LN=-2K,0; yy' =b 31)

Instead of (29), it is possible to use the following procedure

B =B + @7+ (1-1)(B! — By, —h®]), =1 N-1;

(32)
o =Yos BV =0

Computations in each iteration are made by direct algorithms of running count. First,
recurrence rules (29) or (32) are used to compute grid values of B*'. Then, by employing

!

procedures (30) and (31), new iteration approximations are determined for free surface
coordinates. And, at last, grid functions F™' and ®""' are formed by the found values of

x™' y*t B The direction of passing through nodes in algorithms (30) and (31) obeys a
particular statement of differential problem on a capillary surface shape. For other statements
it can be otherwise, not changing the essence of the method.

The obvious advantages of the T-method are: high order of approximation on a
nonuniform grid, exact approximation of boundary conditions, simple design, and simple
realization of an algorithm. Unlike iteration-difference schemes (23), (24) and (25), (26), the
T-method provides the difference analog of the condition x’* +y’* =1 to be implemented at

all nodes, in each iteration and at any T. By doing so, the better agreement between the
itzration solution and the exact solution of the differential problem is attained.
Computational stability. Assume that a computational error appears in the (n+ 1)-th

n+l ~n+l

iteration in the boundary conditions so that the conditions By" =y, +8,, X~ =a,+&; ,

~n+l

vt =b, +m, are in fact utilized in algorithms (29)—(31). When affected by small errors
8,.&, and M, in the (n+1)-th iteration, we obtain the following solution B,.”“ =B +38,,
=g, T =y i=0, N. Bearing in mind that the grid functions
B, x""', y"" also obey Egs (29)—(31) and by using simple trigonometric manipulations, we
arrive at the following relations for a computational error at the grid nodes:

=K =8,; i=L,N (33)



i P R 8, (o O
§i=§o“;{hk[5m "zlsm( "+ ;’]+sm—2"—sm( k1+7kﬂ+

(34)
h2 noo.: 0 - n+ 8 - n o 0 n+ d . T AT
+-é‘—[FH sin "21 cos( f +—"2’—j— F, sm—zicos( ,(1 +7"ﬂ}, i=1,
il b ) ) )
=7, - h,| sin —= cos( g "‘1)+sin—icos( ntl +—") +
N, =Ny k§1{ k[ ) k-1 ) ) k )
(35)

h 0, . d
+—~| F, sin— sm( ~ +—"—")—Fk" sin—sisin( i +6—"j :i=0,N-1
6 2 2 2 2

Equalities (33) point to absolute stability of procedure (29). Based on relations (34)
and (35) with regard to (33), it is easy to make the following rough estimates

h
< k n
I&_,,.|_|§01+I8NI(1+——6 E}%IF" I),

6 I<k<N

h -
|n,ISInNI+I8NI(1+-"— maxle"I); i=0,N.

They mean that procedures (30) and (31) are also stable. Hence, the algorithm for realization
of the tangential method in each iteration is absolutely stable.

Convergence of iterations. Convergence of iteration process (29)—(31) as n— o
can be investigated, assuming that the function F does not depend on a solution, i. e.
@' =0, atall n= 0,1,2,K In this case, iterations are made only according to algorithm (29).

Let B, be an unknown difference solution. Designate the iteration error as €] =P; —B,;
i=0,1K,N; n=0,1,2,K; where € is the initial iteration approximation. Assuming
gy =€ =0 and substituting B" =B +¢" into (29) yields for the error the problem
el —(1-ve! =&y —(1-vel,; i=N-1L,N-2K.1; e =0

which is decomposed into a system of the equalities 8,'.”' -(1-7e =0; i=1,2K,N-1.
Hence, the iteration error in the n _th iteration is related to the error of the initial
approximation by €/ =(1-1)g;" =(I —)le =K =(1-1)"¢}; i
follows that the condition

0, N. From this it

0O<t< 1T =2 (36)

is necessary and sufficient for iteration convergence as 71— <.
Condition (36) is obtained to a linear approximation. Experience shows that as the

nonlinearity grows, the convergence domain (0,7T") gradually narrows, tending to zero
(1" —>0).



RESULTS OF TESTS

Iteration schemes were tested on problems (12)—(15) and (16)—(19). It is known that
the existence of equilibrium states in Problem 1 is limited by small values of the rotation
parameter P < P_(o, Bo) and in the case of a pendent drop (¢ = 1) also of the Bond number
Bo < Bo_(a, P), at excess of which there occurs an equilibrium crisis. The choice of Problem
1 as a test one is explained by our wish to compare the critical values of Bo_ and P, obtained
by a sign of computational instability of iteration schemes with the known data of linear
theory for stability of equilibrium capillary surfaces. It was assumed that a value of the Bond
number or the parameter P exceeded a critical one if at this value iterations diverged. Critical
values of Bo, and P, were refined by the dichotomy method unless their error became less
than §=5-107".

As for Problem 2, the mechanism of physical collapse of equilibrium shapes was
revealed neither theoretically nor experimentally [8, 9]. As the parameter W grows, an MF
drop is elongated along the field direction, not breaking. The surface curvature at the drop
apexes K(0) in this case increases and decreases near the equatorial line. Problem 2 is a good
tool to test iteration schemes for “strength” since the onset of instability, when schemes are
implemented, may be only computational in nature. It is found [6] that as the parameter W
grows, the curvature K(0) increases almost according to the linear law so that the influence
of the parameter W on iteration convergence can be interpreted as the curvature influence.

Furthermore, for brevity, schemes (23), (24) and (25), (26) will be called the scheme A
and the scheme B, respectively; the algorithm of the tangential method (29)—(31), the scheme
T, and its variant of the second order of accuracy, the scheme 7-2. Taking into account the
statement of the test problems, in the algorithms A, B, T it was assumed that x ~r, y ~2;
a,=b, =v,=0; v, =¢a for Problem 1 and y, =-n/2 for Problem 2. Integrals in the
constants L and C were approximated by the same order as the differential equations: the
schemes A, B used the analog of the trapezoid rule and the scheme T, the Euler rule. So,e. g.
in the case of a uniform grid the constants L and C in each iteration of the algorithm 7 were
calculated by the formulas:

Vel 2 ~1/3
1) L:{—an)l:hzziri cosf, +};—2(z0 —¢%’sin2aﬂ} ,
i=1

C:¢(2sin0ﬁ_PL3ij_ Bo

Ty 2 ) mlr}’

N-1 1 -3 2 N-1 hl
2) L= {-Mh(z r?sinB, - Er,i ﬂ , C= _2{—“ +WL[h2r,. cos’B. + Eﬂ
i= r

N i=]

where the first two formulas refer to Problem 1 and two others, to Problem 2. The
corresponding formulas for the scheme 7-2 differ from the above mentioned by the absence of

the addends containing h’.



As a criterion for accuracy of an iteration solution, consideration was made of a value
of the discrepancy of the difference equations, i. e. the iterations A and B continued unless the

condition max HAk (r",z2",F") c < e was satisfied, and the iterations T continued unless the

condition gn.a%’(ﬁf’” —B"Y/h,, —® | <e was satisfied at any number n=n(g) ; where the
<i<

operators A, were of form (22). Calculations were made with an iteration error € =10 on

uniform grids with the steps 2#=1/100 and 1/20 as well as on an adaptive grid with the
number of partitions N =100. Nodes of the adaptive grid were generated by the a priori
method described in [6].

As calculations showed, because of simplification of running count procedures and
reduction of their number, when going from one iteration to another, the scheme T spent for
one iteration a machine time that was 1.5—2 time less than the one spent by the schemes A
and B.

Problem 1. Comparison with the theory [1, 2] has shown that a crisis of the
computational process occurs at the same Bo, and P, as a collapse of equilibrium shapes. So,

for an immovable pendent drop (P=0, ¢=1) at 0. =45° the theoretical value is
Bo, =4988 and we have numerically obtained Bo, =4.982 at h=1/100 by using the

scheme A; at o= 135° these values have appeared to be 0.579 and 0.580, respectively, and at

o =90°, 2.265 and 2.265. It should be said that the presented data of stability theory were
calculated by means of interpolation of Table 9 from [2], with the use of a cubic spline
determined on a pattern of 4 nodes: two on the left and two on the right of a value of o
chosen for comparison. To avoid the influence of an interpolation error the angle o =1523
was considered in more detail. The above table contains an exact value Bo, =2.407 obtained

by the analytical methods for this angle. As a result of numerical experiment at h=1/20,
critical values Bo, =2.3970+0 (schemes A and B), 24185+8 (scheme 7-2), 240580
(scheme T) were obtained. At h=1/100 all schemes showed the same result
Bo, =24058+8. An unremovable 0.001 difference between the analytical and numerical

values of Bo, can be caused by an error of linear theory which occurs due to a neglect of

second-order infinitesimal disturbances.

Theoretically, equilibrium stability of a rotating drop is studied only at Bo=0,
o =90°. A critical value of the rotation parameter P, =4.7613%8 found numerically at
h = 1/100 in fact does not differ from a theoretical one P, =4.763 [2].

The equally exact coincidence of the theoretical and numerical values of the critical
parameters was observed in [12, 13] in the problem on MF seal stability, for whose solution
the scheme A was used, as well as in other problems. Thus, as a result of numerical
experiment it is found that all presented iteration algorithms adequately respond to a crisis of
the equilibrium state of a free surface: if at some values of the problem parameters
equilibrium shapes collapse due to flat or axisymmetric disturbances, then computational
instability appears at the same critical values.

Problem 2. Comparison of the algorithms A, B, T by the most important convergence
indices of the iteration process was made mainly in Problem 2. Table 1 comprises the data on
convergence rate and computational stability when W grows. The left columns at each T
correspond to the scheme A; the middle ones, to the scheme B; the right ones, to the scheme T;
the crosses stand for divergence of the iteration process. The exhaustion of the W values was
made at a step of 2.5. For each new variant, the solution obtained for the previous W served
as an initial iteration approximation. The initial approximation for W=25 1is an exact



solution at W=0. As we see, the scheme 7 does not concede the schemes A and B in
convergence rate but much exceeds them in stability.

Let us emphasize the inconsistency of the scheme B in the case of strongly curved
(locally disturbed) surfaces characteristic for magnetizing and electrically conducting fluids in
high fields. Indeed, the stability domain of the scheme B is limited by the value W = 15, at
which the curvature K(0) only 5.5 times exceeds the curvature, K, of a spherical drop at
W =0. For comparison: at W =150 limiting for the scheme T at A=1/100 the relative
curvature attains K(0)/ K, =47.6 . At the same time, when capillary surfaces are calculated in

a gravitational field, the scheme B can be rather efficient [5]. In this case, a maximum value of
the curvature K as a rule does not much differ from the spherical surface curvature that is
realized under zero-gravity, and physical instability occurs earlier than computational one.

Fig. 1 plots the boundaries of computational stability of iteration schemes. Each curve
divides the domain (W, T) into two subdomains: computational stability domain lies below

the curve while the computational instability one, above it. It is seen that both schemes of
tangential method (7 and 7-2) are stable over an essentially wider range of parameters than the
schemes A and B. Note that the stability domain of the scheme B does not depend on the step
h , the stability of the remaining schemes is much improved as s decreases.

Adaptive grid. An adaptive grid has proved to be a powerful tool to stabilize
iterations as the surface curvature grows. If on the uniform grid with the step A =1/100 the
stability domain of the scheme T is limited by the value W =150 (see Table 1), then on the
adaptive grid the stability boundary moves to W =4800. Because of an optimal distribution
of the nodes s,, high accuracy of results is provided, allowing a peak-shaped apex formation
to be described as W grows (Fig. 2). A close-up view of such an apex is shown in Fig. 2-e. Its
curvature 1491 times exceeds that of a spherical drop at W = 0. It is interesting that more than
the half of the nodes s, is concentrated on the depicted fragment of the surface meridian
although its length is less than 1/200 of the part of the total meridian length within the domain

z2>0. As the apex is approached, a monotonic increase of the curvature is accompanied by
decreasing the steps h =s,—s,_,. So, at W=4800 a minimum step attains a value of

h, =8-107" and a maximum one, h, =006.

For the scheme A, the limiting values of the magnetic parameter for it have proved to
be much lower: W = 60 (uniform grid) and W = 150 (adaptive grid). Note that the stabilizing
properties of the scheme A modified to be realized on adaptive grids are essentially improved
by coordinate-wise relaxation: in [6], due to coordinate-wise relaxation a solution was
obtained within W < 750. However, in the case of the scheme T this procedure did not yield a
positive result.
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Table 1

Indices of convergence rate and stability of iteration schemes
for Problem 2 at h = 1/100

Iteration number n(€)
W
=05 1=01 =005 1=001
2.5 19 30 42 | 113 14 239|231 30 484 | 1167 151 2449
5 210 X 38 | 123 29 219|249 21 444 | 1262 135 2246
7.5 X — 41 1129 o 197 261 101 401 | 1320 114 2032
10 60 | 132 — 177|268 o 363 | 1357 88 1847
125 — — 141|134 — 159|273 — 330 | 1377 58 1694
15 w136 — 1451276 — 295 | 1391 1550
s — — — 209 — 170|274 — 260 | 1381 — 1143
30 . _ |47 — 191]272 — 2065|1370 — | 188
5| - — — X _ 2161|270 — 249 | 1357 — 1127
40 | —  — 496|268 — 256 1313 — 1127
25 — — — | — — 992|386 — 257 | 1301 — 1086
45 | e | 833 — 261 [ 1292 — 1044
475 | — — —| - — — X 263 | 1295 — 1063
55 | - — ] = — 307 |2260 — 1039
75| — — —| - - — 4| — - 332 | 3424 —  109%4
60 - |- = = = = 34 o0 — 1132
75| — — - = - — | — - 1691 | — — 1145
80 - - = = = = = 4438 — — 1125
?2s 1 — - - - - -] —  — oo — — 1141
“s{ - - - - - —| — — — — — 3933
1475 — — — | - - — | — — — — 4725
50| - - - - - —| — — — — —  >5000
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Fig. 1. Boundaries of computational stability of iteration schemes for Problem 2 at A =1/20
(a) and h=1/100 (b): I, scheme B: 2, scheme A; 3, scheme 7-2; 4, scheme T.
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Fig. 2. Drop deformation due to increasing magnetic parameter W: a, W =0; b, 100; c,
1000; d, 4800; e, peak-shaped apex of a drop at W =4800. Problem 2.



