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Abstract. Most of the linear operators acting in Banach spaces are assumed to be
closed or closable. Yet in a series of problems some nonclosable operators afise in a natural

way and consequently it is advisable to find a way of application of the general theory to
such operators.

The present paper deals with a certain construction method which enables us to obtain
a closed operator associated with a given nonclosable operator. Also some examples of such
operators are given whose construction proves to be useful.

We would like to add that this construction has been applied to some particular cases
but our purpose is to show a wide applicability of this approach.

1. Fundamental construction In this section the following notations
will be used:
(X,1lil1) and (Y.} |l2) denote Banach spaces:
4:X D D(A) — ¥ denotes a linear operator with dense domain D A):
M(AY:={yeY :YneN 3z,€ D(A), zp,—0. Az,—y}h:
G(A):= {(z.Az) € X x Y : z € D(A)} denotes the graph of A:

Px:X XY — X and Py : X xY — Y denote the projections on X and ¥’
respectively.

LEMMA 1. The set M(A) is a closed vector subspace of Y.
Proof. It follows from the linearity of A that M(A) is a vector subspace
of Y.

Let (yn) be a sequence of points y, € M(A) such that y, — y. Then

- : - v . (k < 1 3 B
for each n = V there exists points :‘n) & D(A) such that z‘,,) — 0 and

Az’ — ya when & — 0. For each n € V we choose an index k(n) such
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that

1 1
”:,_.(k(ﬂ))”1 £ - and |lA:c£f““)) = ¥nll2 £ -

Then z, = =z ™) _ 0 and Az, — y,.e. y € M(A).
The linear subspace M(A) is, in a certain sense, a measure of nonclos-
ability of the operator A.

DEFINITION. A linar operator A is said to be closable (2] if the closure
G(A) of the graph G(A) is the graph of a certain operator A, called the
closure of A. Thus D(A) C D(A) and Az = Az for all z € D(A).

In the case of a2 nonclosable operator A, the set -C_J-(-X)— C X xY is only
a relation which is not a mapping in the sense that

if (z,u),(z,u2) € G(A), then u; = us.

Lemma 2. Let A : X — Y be an arbitrary linear operator and let
(z,v1) € G(A). Then (z,v,) € G(A) if and only if v — vy € M(A).

Proof. Since (z,1) € G(A) there exists a sequence (z,) of points z, €
D(A) such that z, — z and Az, — y;. Now, let (z,y,) € G(A). Then there
exists a sequence (z}) such that z, € D(A4), z,, — z and Az!, — y,. Thus
z,—z, € D(A),zn—2,, — 0and A(z,—2,) — y1— 1y, i.e. y1 —y2 € M(A).
Conversely, if y; —y2 € M(A), then there exists a sequence (z/ ) :c" € D(A)
such that z/ — 0 and Az}, — v — y2. Then T, := z, — 2! — z and
AZ, = Az, - AI:: =Yy = (yl o y2) = Y2, ie. (-Ts y?) € G(A)

In other terminology, if M(A) # {0}, then G(A) determines 2 multi-
valued operator 4 : X D D(___)___ Y, where D(A) = Px(G(A)). Thus
A(z) = y+ M(A), for (z,y) € G(A).

If the operator A is closable, then the projection Px induces a linear
isomorphism

A= lem:G(A) — D(A),
so that the diagram

= ~G(A)

D(A)
. R /

is commutative.
In the case of a nonclosable operator A, the mapping P; is not injective
and the diagram (1) becomes

Py :G(A) =Y

Let Z denote the set of all Cauchy sequences (z,) in X such that z,, €
D(A) and (Az,) is a Cauchy sequence in Y.
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DEFINITION. Sequences (z,),(z.) € Z are said to be equivalent if z,, —
z!. — 0 and Az, — Az, — 0. The set of equivalence classes of sequences
(z,) € Z will be denoted by Z4.

LEMMA 3. For every linear operator A : X D D(A) — Y, the mapping
jA : ZA — G(A) deﬁned by

Ja(z) = (lim z,, im Az,), (z,)€:z
n—oo n—0o0
is an isometric isomorphism.

Proof. Since limp.o 5 and lim, . Az, are independent of the choice
of the representative (z,) € Z, the mapping J, is well defined. Also the
inclusion Ja(Z4) C G(A) holds. Now let J4(z) = 0, i.e. limpmeo Zp = 0
and lim Az, = 0. This implies that z = 0.

It remains to show that J4 is surjective. To this end let (z,y) € _C_}’_(-;l_)
This means that there exists a sequence (z,) of points z, € D(A) such
that z, — z, Az, — y and so (z,) € Z. Let z be the equivalence class
determined by (z,). Then J4(2) = (z,y). This completes the proof.

If the operator A is closable, then Z, is also algebraically isomorphic
to D(A). Therefore, in the case of an arbitrary operator 4 it is natural to
consider the space Z4 instead of D(A) and then to construct a new operator
A by means of the diagram

Za 4 G

N
. n;

:
A
which is analogous to diagram (1).

DEFINITION. The operator A:Z4 — Y defined by the formula
(3) A(z) = lim Aza, (zn)€z

is called the eztended closure of A.

The total of our results can be summerized as follows. The equation of
the form Az = y with a nonclosable operator A leads to equation Az = y
with multivalued operator A. Multivalence of the operator A means that
the initial problem has not been posed correctly because the right-hand side
of the equation is not uniquely defined by z.

For example, if in the initial problem an element z describes a certain
process, then multivalence of the operator A means that there exist many
different states of a system corresponding to the element z. Therefore each
element z must be the whole class of elements of another type, each of which
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uniquely defines y, which means that each element r of new type defines a
certain state of our system. The set of these new elements z, introduced
above. forms the space Z4 whose elements are classes of equivalent Cauchy
sequences of elements from D(A).

Let us emphasize that this equivalence relation used in this construction
is stronger than the one in the case of completion of space. Thus our ap-
proach leads to a decomposition into smaller equivalence classes than in the
case of completion in the norm of the space X.

On the space Z4, in a natural way, two topologies can be defined. The
first one is defined by the seminorm

(4) o(z) = Im |lzall,(zn) € 2
and the second one by the norm

(5) lzlls = Yim (lzalls + | 4zall2):

If the operator A is closable, then p(z) becomes ||z||; as Z4 and D(A) are
isomorphic. If, however, A is nonclosable, then p(z) is not a norm. Therefore
A is not a continuous operator from the nonseparated locally convex space
Z4 toY and its graph G(A) is closed as it is isometrically isomorphic to
G(A).

The space Z4 equipped with norm (5) is a Banach space as it is the
completion of D(A) with respect to its graph norm.

THEOREM 1. The operator A : (Z4, -lla) = (Y, |l|l2) ts a linear bounded
operator and that

HZH _ ) <1, i A is bounded
i if A is unbounded.

Proof. It follows from (3) and (5) that
6) |zl = lim [[Azallo < lim (lzall + Azall2) = izlo,

ie |4 < 1.
Now let ¢ be the least constant for which the inequality

(7) liAzll2 < c(llzlli + {lAzl|l2), z € D(A)
holds. Then

c = sup 1Azl = sup 1 = .
x¢o‘||$||1 t lIA:lI“g =#0 1+ th: 1+ infx#O H'f:lllllz
1

—_— —

- Ar -1
1+ (sup ﬂh_l'lT"l_?)
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ITAl
E, if A is unbounded.
The domain D(A) of A, in a natural way, (by means of stationary se-

quences), is imbedded in Z4 and that Az = Az for all z € D(A),ie. Ais
an extention of the operator A.

THREOREM 2. Let A, : Z4, D Dg_A) — Y be the operator defined by
A.z = Az. Then A, is closable and A is its closure.

1
{ g T 1, if A is bounded

Proof. The topology on G(A.) generated by the seminorm o(2z)+||Az||
coincides with the topology generated by the norm ||z||; + ||Az[|2. Conse-
quently the closure of G(A.) in both topologies coincides. This completes
the proof.

In view of Lemma 2, M ( A) is isomorphic to ker Px, where Px : G(A) —
X is the projection and so M(A) is closed in G(A4).

As the vector space 5'(_A—)- and consequently, in view of Lemma 2, the
space Z4 is isomorphic to D(A) + M(A), where D(A) = Px(G(A)).

In the case when ker Px is topologically complemented in G(A) and N
is its complement, then

ZA > N @ iW(A),
i.e. the norm on Z4 is equivalent to the norm ||z||4 = ||z1]] + ||22]], where
z=121+ 23,2 €N and z; € M(A). Therefore, e.g. in the case of Hilbert
spaces, we have the following description of the space Z 4 and the operator A.

THEOREM 3. Let X and Y be Hilbert spaces and let A : X — Y be a
linear operator with its domasn D(A). Let Ag : D(A) — Y be the operator
defined by Aoz = Py(Pn(z, Az)), where N is the orthogonal complement to
M(A) in G(A). Then the operator Ag is closable, D(Ag) = D(A) and the
operator A can be ezpressed in the form

A(z,y) = Aoz +y.

The constructions given above become simpler in two extreme cases: (1)
when M(A) = {0}, i.e. A is closable; (2) when M(A4) = A(X).
In the second case the operator A will be called mazimally nonclosable. In

this case Agz = 0 and A is defined on X ®A(X) by the formula A(z,y) = y.

THEOREM 4. For any linear operator A : X — Y with dense domain
D(A), the following conditions are equivalent:

(i) A is mazimally nonclosable;

(i) for every y € A(X) there exists a sequence (zj) of points z € D(A)
such that z, — 0 and Az — y;

41



(ili) for every x € X there ezists a sequence (ux) of points ux € D(A)
such that uy — z, Auy — 0.

Proof. (i)« (ii) holds by the definition of maximally nonclosable oper-
ator. L

(ii)=(ii1). Let z € X. As D(A) = X, there exists a sequence (w;) of
points wx € D(A) such that wy — z. Let us consider the sequence (Awg)
which, generally speaking, is not convergent. For each vy = Aw; by (ii),
there exists a sequence (zi,) of points z;, € D(A) such that 2z, — 0 and
Azy, — vi, when | — oc. Let us choose an integer I(k) in such a way that

1] 1
(8) ”zkl(k)”l S T a'nd ”Azkj(g) = 'Uk”2 S 1
k k

Put ux = Wk — Zky,,- Then we get

“uk - $”1 £ “w* - zul + “Zkz(k)ul — 0, when k—

and

1
| Auklls < P 0, when k — .

(iii)=(ii). Let y € A(X). Then elements z, € D(A)(k = 1,2,...) can
be found in such a way that Azx — y. In view of (iii). for each zx € D(A)
a sequence (ug, ) of points uy, € D(A) can be chosen in such a way that
ug, — 2¢ and Auy, — 0, when [/ — oo. For each k we now choose /(k) so as

to have
1 1
“ukl(k) = Zk”l < '}'C' and “Auk,(g)”2 < 'E
On putting Ty = zk — Ukg,, We obtain ||zl < § — 0 and ||Azx — yll2 <
I Azx = yll2 + | A%k, ll2 = 0, when k — co. This completes the proof.
CoroLLARY 1. If A: X D D(A) — Y is a mazimally nonclosable
operator with dense domain, then

GA)=X e M(A)= X & A(X).
Proof. Since A is maximally nonclosable, then in view of Theorem 4,

we have (z,0) € G(A) and (0,y) € G(A) for every z € X and y € A(X).
Thus X C G(A) and A(X)C G(A). Hence XS A(X) C G(A) C X & A(X).

CoOROLLARY 2. If ker A = X, then A is mazimally nonclosable.

The proof follows immediately from (iii) of Theorem 4.

2. Examples. From the above considerations it follows that the natu-
ral space, on which the extended closure of A is uniqely defined, arises as
a result of decomposition of a point z € X onto the whole family of ele-
ment of different character. This family can be parametrised by points of
the space M(A). Thus the description of M(A) is the detection of latent
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parameters intrinsic to the process described by the nonclosable operator
A. From this point of view, in what follows, we consider several operators
known in analysis and describe for them the measure of nonclosability.

2.1. Completions in different norms. Let a vector space X be equipped
with two norms ||.||1, and |}.|}z.

DEFINITION. The norm || -2 is said to be subordinate to the norm || - |
(3] if given a Cauchy sequence (z,) in both these norms which converges to
zero in norm || - [|1, it follows that it converges to zero in norm || - ||2.

DEFINITION. Two norms are said to be compatible [3] if one of them is
subordinate to the other. We notice that the subordinativity of the norm

|| - |}z to the norm || - [|; means closability of the identity operator
(9) (X0 - 1h) = (X0 )-
We recall [2] that two norms ||-||; and || - ||; are said to be comparable, || - ||;
being weaker and || - ||2 being stronger, if there exists a constant ¢ > 0 such
that, for all z € X, the inequality
(10) llzlls < cllzl2
holds.

It follows from inequality (10) that the norm || - ||; is subordinate to the
norm || - ||z, yet the norm subordinativity does not imply its comparability.

Every Cauchy sequence in a stronger norm is also a Cauchy sequence
in a weaker norm. If the space X is complete in both norms, then by the
Banach theorem on inverse operator, the comparability of norms implies
their equivalence, i.e. there exist constants ¢/ > 0 and ¢” > 0 such that

dlizlly < llzll2 € "l|z|l; for all z € X.

However, if the space X is not complete (even in one of the norms), then
the comparability of norms may not imply their equivalence.

In this case we can consider two complete spaces X; and X, with norm
I - |l1 and norm || - ||;, respectively which are obtained by completion of
the space X in norms || - ||; and || - ||, respectively. If || - ||2 is stronger
than || - |1, then we can establish the natural mapping j : X; — X;. Every
element T € X; is defined by a Cauchy sequence (zn) of elements in X;. As
it was said earlier, this sequence is a Cauchy sequence in X; and therefore it
defines an element T € X;. It is easy to check that the element T is uniquely
determined by T, i.e. the mapping j : X; — X is correctly defined. However
this mapping j is not necessarily injective, i.e. different elements ,7 € X,
may be transformed onto some element T € X;. To exclude this kind of
possibility we introduce the notion of compatible norms. Indeed, if the norm
I| - ||2 is subordinate to the norm || - ||;, then the mapping 7 : X2 — X, is
injective.
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Let us consider an example of a space whose two completions are related
to each other in the case of noncompatible norms, e.g. the vector space
X = C*|0,1] equipped with two norms

lizhs = Joax lz(t)] and Jlz|lo = o lz(1)] + |2(0)1.

The norm ||-||2 is stronger than the norm ||-||;. However the norm |- ||, is not
subordinate to the norm || -||;. To this end let us consider the sequence (z,),
where 7,(t) = X sinnt. It is easy to see that (z,)is a Cauchy sequence in
these two norms which converges to zero in norm ||-||; and since ||z,|js = 1,
it does not converge to zero in norm || - ||o.

In the given example let X; = C[0,1], X; = C[0,1) & R. Let us look
at this example from the point of view of the considered constructions in
Section 1. In this case we may take for an unclosable operator A the operator
A :C[0,1] = C[0,1) & R defined by

Az = (z,2'(0)), D(4)=C>[0,1],
whose measure of nonclosability is M(A) = R and is isomorphic to ker j.

2.2. The spaces L,(T,M,p) with different measures. Let (T, M) be a
measurable space and let uy, s be o-additive measures on M. Let M, and
M, denote the Lebesgue extensions of the o-algebra M with respect to the
given measures y; and po. respectively. The Lebesgue extensions of these
measures will also be denoted by the same letters y; and u;. We recall [4]
that the measure u, is absolutely continuous with respect to measure p; if
for every E € M, py(E) = 0 implies that u;(E) = 0.

THEOREM 5. Let Lp(T,Mi,py) and Ly(T,Ma,p2) 1 < p < 400 be
Lebesgue spaces and let

X LP(T, Ml,[lq) N LP(T,Mz,[lz)

be a vector subspace dense in each of the spaces L,(T,My,px), k = 1,2.
Then the norm || - |l2 = || - ||1,(7.M;,u,) 07 X is subordinate to the norm

It - I, (7.My uy) if and only if the measure p, is absolutely continuous with
respect to measure fiy.

Proof. Sufficiency. Let u; be absolutely continuous with respect to
f1. Let us choose a sequence of function u, € X such that u, — 0 in
L,(T, My, ) and which is a Cauchy sequence in L (T, M,, up). Then there
exists u € Lp(T, M3, o) such that ||u, — u[ls = 0. Consequently there exists
a subsequence (u,, ) of the sequence (u,) such that u,(t) — u(t) p; - a.e.
(i3 - almost everywhere) and un, (1) — 0 py - a.e. (4]. This means that there
exists a subset £ C M; such that y;(F) = 0 and limy_, u,, (¢) = 0 for all
teT\E.
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As M; is the Lebesgue extention of M, there exists a subset £y € M
such that £ C E; and py(E,) = 0. In view of absolute continuity of us
with respect to pu; we have pz(E) = 0 and u,, (t) - Oforallt € T\ E;.
Consequently, u(t) = 0 forall t € T\ E;,ie. uit) =0 po - ae.and so v = 0
in L,(T, M3, p2). Thus the norm | - |}, is subordinate to the norm || - ;.

Necessity. Let || -||2 be subordinate to ||||; and suppose that the measure
2 is not absolutely continuous with respect to measure pq, i.e. there exists
a subset E € M such that p;(E) = 0 but py(E) > 0. Let us consider the
measure g3 = #1 + g2 on M and let L,(T, M3, u3) be the Lebesgue space
introduced in an analogous way as previously. Since || - |ls = || - [l1 + || - |2,
the norm || - ||; is subordinate to norm || - ||3. Then, in accordance with
our considerations in Section 2.1, the space L,(T, M3,u3) is imbedded in
Ly(T, Mk, px), k = 1,2 and that X is dense in L,(T, M3, u3). Now let us
choose a sequence (un), #, € X, such that u, — xg in L (T, M3, p3).
Moreover, without limiting the generality, we can also assume that u, — xg
pz-a.e. and so does it py-a.e. Since the norms || - ||; and || - ||z are weaker
than the norm || - ||3, so up — xg in Ly(T, Mk, px), k = 1,2. But xg = 0
a.e.in L,(T, My, p1) and xg = 1 a.e. in L,(T, M3, 2) which contradicts the
subordinativity of || - ||z to || - |]i. This completes the proof.

COROLLARY. In order that the space L,(T, My, y12) be naturally and con-
tinuously tmbedded in the space L,(T,My,p,) it is necessary and sufficient
that the following conditions be satisfied:

(i) there ezists a constant ¢ > 0 such that p (E) < cuz(E) for every
E e M;
(ii) po is absolutely continuous with respect to u,.

We notice that if inequality (i) in the Corollary to Theorem 3 is satisfied
but the measure py is not absolutely continuous with respect to measure
u1, then in this case the measure of nonclosability of the operator j defined
by j(z) = z for z € X, can be obtained as follows. By the Lebesgue decom-
position theorem, the measure p; can be written as p; = p§® + us'™9, pge

being the absolutely continuous measure with respect to p; and u3'™ is the
singular measure with respect to u;. Then

LP(T’ ‘M27 1“2) = LP(T, Ml’ #;c) 7] LP(T’ Mg, “;ing)
and
M(7) = Lp(T, My, py™ ™).
2.3. Imbedings of the Sobolev spaces. Let S(R") be the Schwartz space

18] of infinitely differentiable functions u : R® — R such that for arbitrary
multi-indices { = (Iy,...,ln), k = (ky,...,ks) € N} N, = {0,1,2,...}

(11) sup |2'D*u(z)| < +o0.
zER®
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For any s € R let || - || be a norm defined on S(R") by the formula

3
(12) fulle= | § @+ il yiacer a
(13) ly= S w(z)e™ =8 dr
ml

is the Fourier transform of the function u and

(2,8) = 2161 + ... + Tpbn.

The completion of the space S(R"™) in the norm ||-||3 is called the Sobolev
space denoted by H*(R"™) [5]. For s > 0 the space H?*is naturally understood
as a subspace of Ly(R™), H°(R") = Ly(R") and for s < 0, the elements of
H* are distributions.

It is obvious that for s; < s

(14) llulls, < llufls;, for uw € S(RT).

Let us turn our attention to the fact that the known continuous embed-
ding of the spaces H*2(R") C H**(R") is not a consequence of inequality
(14) (as sometimes it is maintained) but it is a consequence of subordina-
tivity of the norms || - ||5, and || - ||5,, since by Corollary to Theorem 5. the
norm subordinativity is equivalent to absolute continuity of measure u,,
with respect to u,,, where pi(€) = (1 + |£]2)%+d€, k = 1,2.

Let

7

and let the space S(R)be equipped with the norm

lelle = [ § hu(=)Po(e) da].
3
The completion of § (R)in this norm is the space Ly(R, p) with weight p. Un-
der this norm, the embedding operatop j, : S(R) — H~?(R) is nonclosable
and M(j,) = {ab : a € C}, where § is Dirac’s function.

The explanation of nonclosability of the operator j, follows from the
fact that the natural imbedding of the space L,(R,p) into the space of
distributions H~*(R) does not exist. In particular, to the function % there
corresponds the whole class of distributions of the form P(1) + aé [3].

forz e R

2.4. Traces in Sobolev’s spaces. In this section we shall deal with the
trace operator [5):

(15) T: H*R") — HY(R"™),
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defined by the formula
(TU) (215555 8a) =150 00 B5-1,0); B E SR,

whose value Tz is a function of n — 1 variables.
In view of the trace theorem [5], the following is well known:

If s > 1 and ¢ = s — }, then the trace operator (15) is defined on the

whole space H*(R™) which is continuous and surjective.

As a corollary of the trace theorem we have the assertion:

If s > 1, then the operator (15) is bounded for ¢ < s — J and is closable
for ¢ > s — 4 and therefore unbounded.

Besides, it is quoted in [5] that for s < 3 the operator T : H*(R") —
H*=%(R™"!) is unbounded.

The following more exact assertion proves to be true.

THEOREM 6. If s < 1, then the trace operator (15) is mazimally non-
closable for any q.

Proof. It is sufficient to show that there exists a dense vector subspace
V C H? with the property that for v € V we can find a sequence (uy) of
elements ux € H*(R") such that uy — 0in H* and Tuy — vin HY. For the
space V we take the set

V = {v: 7 are bounded functions with compact support}.

It is easy to check that V is contained in every H?. In view of the
Paley-Wiener theorem we observe that the functions in V are analytic on
R"~! and converge to 0 at infinity.

Let us consider the function ¢ such that

~ - _ )™ 1€al <1

(16) #en) = mxg-na(en) = { 57 15T
ie.

SIN Tp
(17) #(zn) = { sy | CRFD

i i =
Let us put
(18) uk(z',z,) = p(kzy)v(z"), forveV.

We notice that
(19) B(€) < C, & =(bny.-- &am1) ER™ and o(€') =0forlé'| > R.
Then, for every ¢

Tup=veV and Tup — vin HY(R").
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Now we shall estimate |lukll,:

lo(€")*(1 + |€]*)° d€ <

Uk

k
3 dén | (1+)€12 e

-k |¢'|<R
Since 14+ €2 =14+ € +...+& =146+ 6.]° < (1 + |€'])? we obtain

1
el = 5 |
km

:,

IN

IA

luill2

o b | Q11+ 1) den e’ =

—k IE'I<R

QCTC]
k2

272 C2C,
k?2(2s+1) =

§(1+ 2 k)2s+l n—2d

0

CaR(1+ R + k)2++1
k2

C R
< o VL4 r+ ke g — 0,
0

as 2s + 1 < 2. This completes the proof.

CoRrROLLARY. The closure of the graph of the trace operator (15) for
s < 3 and each g coincides with H*(R") x HY(R""1).

This space was introduced by J. A. Rojtberg [7] for construction of the
solvability theory for elliptic boundary value problems in the complete scale
for Sobolev’s spaces.

2.5 Eztention of the operator dt Let us consider the differential oper-
ator A = & : L,[0,1] — L,[0,1] with the domain D(A) = C?*[0,1], where
L,[0,1]is the real normed space of Lebesgue integrable functions. It is known
(6] that this operator is closable and the domain D(A) of its closure A4 is
the set of all absolutely continuous functions. Since continuous functions
of bounded variation have the integrable derivative a.e. it follows thet the
operator A can be further extended to the operator B, Bz := %’g’- with the
domain D(B) to be the set of all continuous functions on {0, 1] of bounded
variation. Stone noticed pathological properties of this operator [9]. Unlike
the operator A, where Az = 0, it implies that z = const, so that the solu-
tion set of the equation Bu = 0 is infinite dimensional and even dense in
L,[0,1].

Following Stone we shall sketch the proof.

Since the set of linear combinations of characteristic functions of intervals
is dense in Ly{0,1], it suffices to prove that every characteristic function
X{a 8> [@,8] C [0,1] can be approximated by a continuous function of bounded
variation whose derivative is equal to zero almost everywere. To this end we
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construct a sequence (¢, ) of functions as follows.

( [ 1] 1
0, te |0,a—~— U{b-}-—,l];
i n | n
1 t € la,b];
[ 1 ]
wa(t), t€ la-— el is continuous and increasing from 0 to 1

n(t) = 4 with the zero derivative (e.g. the
contractive Cantor function);

1
wn(t), te€ [b,b+ ;) is continuous and decreasing from 1 to 0

L with the zero derivative.

Then By, = 0 and @, — Xjqa,4 in L1[0, 1}. Since ker B is everywhere dense
in L,[0, 1], it follows from Corollary 2 of Theorem 4, that the operator B
is maximally nonclosable. We note that in original paper [9] the proof of
nonclosability of the operator B is more complicated.

2.6. d-function and é-sequences. Dirac’s definition of the §-function is
well known only as far as it is nonunderstandable and unnatural from the
mathematical point of view as §(z) was defined by means of the properties:

|6(z)=1 and &(z)=0 forallz#0.
R

We show that precisely this definition arises in investigation of a certain
nonclosable operator and that the general approach, presented above, auto-
matically leads to a correct definition of the §-function.

Let us consider the equation

tu(t) = f(t), where f€ Li[~1,1;dt].
Then it would be natural to seek the function u(t) in the space Ly{-1,1;
it|dt]. Let us add a nonlocal condition

1

S u(t)di = C, C being a constant.
~1

This problem arises, for example, as a limit case for a differentiable equation
with a small parameter and nonlocal condition:

cu'(t) + tu(t) = £(t)
1

| w(t)dt=C.
-1
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In particular, when f(t) = 0 and C = 1, we obtain the problem:
tu(t) = 0,
1

(20 | s 1

-1

from which we conclude that u(t) # 0 for ¢t # 0 and Sx_l u(t)dt =1, i.e. u(t)
is the é-function in the sense of Dirac.

Let D(A):= Ly[-1,1;dt] C L1[~1.1;|t|dt] :== X and let the operator A
be defined by the formula:

1

Au= (su(s), | w(t)dt) €Y := Li[-1,Lidt] & R
-1

This operator is nonclosable. The space M(A) is one-dimensional and con-
sists of elements of the form (0,&), £ € R.
Let us construct the space Z4 and the operator A according to the
construction given above. We conclude that Z consists of sequences {uy) of
integrable functions satisfying the conditions:
1 1
S [t] lum(?) — un(t)|dt — 0 and S un(t) dt converges for n,m — oc.
-, -1

Sequences (un) and (v, ) are said to be equivalent of

1 1
| 12l lun(t) = va(t){dt = 0 and | [ua(t) = va(t)]dt — 0
'l -1
The set of equivalence classes forms the space Z4. We note that the space
Z 4 is isomorphic to X &R and that the operator A defines this isomorphism.
Consequently, the solution of problem (20) is the class consisting of se-
quences (u,) of integrable functions such that
1 1
(21) | 1l lun(ldt =0, | ua(t)dt — 1.
-1 -1
This class is called a é-function and its elements are called é-sequences.
We note that in literature one can find different definitions of §-sequences
but the ones obtained here, in our opinion, are most relevent to the physical
sense, because the first condition in (21) means that the masses or electic

charges shrink to the point 0 and the second condition means that the whole
mass or charge tends to the unit.

The space Z,4 is imbedded in the Schwartz space of distributions in a
natural manner.
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The above examples show that nonclosable operators arise in analysis in
a natural manner and the approach to these operators given above testifies
that they can be sufficiently well investigated .

Let us remark that the operator of multiplication by a generalized func-
tion is a nonclosable operator and in the new theory of generalized functions
analogous constructions arise [1].

In conclusion the authors express sincere thanks to Dr W. A. Erovenko
for calling our attention to Stone's example.
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