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Abstract—Some classical results are recalled, and a finite part distribution is interpreted as
the zero-order term in the expansion of a homogeneous distribution. An adelic finite part dis-
tribution and a generalization of the Tate distribution are defined, and their Fourier transforms
are calculated. The machinery of mnemofunctions (nonlinear generalized functions) is adapted
to p-adic and adelic cases, and product formulas for some specific distributions are given.

INTRODUCTION

In this paper, we study some specific local (p-adic, real) and adelic distributions and also deal
with the problem of multiplying distributions in p-adic and adelic cases.

In Section 1, we recall some well-known distributions and interpret local finite parts as zero-order
terms in the expansions of homogeneous distributions. In Section 2, we consider an adelic finite
part and a generalization of the Tate distribution and obtain analogues of a functional equation.
Fourier transforms are given both in local and adelic cases. For some other distributions on adeles
and their application in quantum mechanics, see [9].

Sections 3 and 4 concern the basics of mnemofunction theory in p-adic and adelic cases. The
first example of mnemofunctions was presented by Colombeau (the so-called new generalized func-
tions [8]). Later, the essential part of the construction was derived, and a number of analogous
algebras with real domains were constructed and studied (1, 5, 7, 10]. Here, we construct an
algebra of mnemofunctions with p-adic and adelic domains with well-defined Fourier transform and
convolution (for the p-adic case, see also [6]).

These algebras are of great interest in connection with the development of p-adic mathematical
physics [3] and as an example for the general theory of mnemofunctions.

1. LOCAL DISTRIBUTIONS

Let @, be the completion of rational numbers Q with respect to the valuation |-|,, where v = oo
corresponds to the ordinary absolute value and v = p, to a p-adic valuation. We often omit the
index v when a formula is valid for all local cases.

Let Ix denote the characteristic function of a subset X in an appropriate space.

Let dz, be an additive Haar measure on Q, (which coincides with the standard Lebesgue measure
on Q. = R and takes the value 1 in the set Z, of p-adic integers on Q,). We choose normalizing
constants A, for the multiplicative Haar measures d*z, = M\, dz,/|z|, on Q) to be Ac = 1 and
Ap = (1 =p~1)~1, respectively.
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216 Ya.M. RADYNA, Ya.V. RADYNO

Let 6, be a character on a multiplicative subgroup U, = {z € Q,: |z| = 1}. It is continued to
the whole QX by

bo(az) = 0o(z), @>0,  O,(pFz) =8,(z), ke€Z.

There is only one nontrivial character for R and infinitely many for Q,. Any quasicharacter on Q,
(homomorphism QX — C*) is uniquely represented as 6(z)|z|®, s € C [3]. We often omit @ in the
notations when it is trivial.

Consider the Schwartz-Bruhat space S(Q,) (consisting of smooth rapidly decreasing functions
on R and locally constant compactly supported functions on Q) and a distribution Agy on it,

M) = [e@p@ltas  peS@), Res>o.
Q
Now, we continue AY, to Res > —1 in the real case and to all s in the p-adic case. Choose a

specific function w, € S(Q,) such that w,(0) = 1. It is convenient to use exp(—7rzZ) in the real
case and w(x,) = Iz, (), the characteristic function of Zy, in the p-adic case. Then,

£0(0) = [ (012) - pOl)B@)al &2 +9(0) [wl@o@)it &'z
Q

Q

= A::;’(cp) + 8(p)AY p(w) (here, ¢ is the Dirac delta).

The distribution Ay, which depends on w, is entire on the domain of interest, and AY 4(w) is easily
computed. It is zero for nontrivial 6 and a meromorphic function on C with a s1mple pole at s=0

for trivial 6:

1 1 In
g RS P+

M) =(1=p™) = o 45+

AP (w) = %1&'"/21"(5/2) =g -;—(7., +In7) +

(ve = =I"(1) is the Euler-Mascheroni constant). Introducing constants R = R(w) and T' = T"(w)
such that Ag(w) = Rs™' + T + ..., we obtain a Laurent series for A, around s = 0: A, =
(R6)s™'+ (A§ +T6)+.... The uniqueness of the expansion implies that the coefficient R¥(w) and
the distribution A§ + T'6 do not depend on w.

Definition. We define a local finite part distribution Py to be the zero term in the expansion
of Ay, at s =0: Py =Af, for  #1and P = A"’“"+T"(w)6 for 6 = 1.

Example 1.1. The p-adic finite part PP equals (1 — p'l)‘lp];ﬂ; - %"‘l, where 'P]lep is the
finite part introduced by Vladimirov [3]:

Pz = [ (olo) - o) T2 + / (N

Zp

Example 1.2. The real finite part Pgy, is the classical Cauchy finite part 'P—Il-.
The Fourier transform Fv of ¢ € S(Q,) is defined by

(F)(E) = / (c) exp(=2mict) dreo,  (F)(E) = / (z) exp(2ni{ze}y) doy
R
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DISTRIBUTIONS AND MNEMOFUNCTIONS ON ADELES 217

for the real and p-adic cases, respectively, where {y}, is the p-adic fractional part [3]. The Fourier
transform is a unitary operator on S(Q,) and, for any distribution u € §’'(Q,), is defined by duality:

(Fu, ) = (u, Fop), € S(Qu).
The distribution A}, is known to satisfy the functional equation (3]

F(A%9) =T.(5,6)A%_

with T, called a local Gamma function. Since F(w,) = w,, we have

—ms—1 Woo _
T,(s) = AA:(:(JQ, 3= 11 _’; —,  Tule)= Z%E(T.l) = 2(27)™* cos %SI‘(S)

for 8 = 1. Introduce 7, and 7, such that ', (1 — €) = ve + Te2 4 ... as € — 0, namely,

Inp (Inp)?p(p —3) 4
_p_ls-f— 2(p — 1) o T

On the one hand, T, ()AY = (yRS) + (YP + T7R8)e + .... On the other hand, |z|'~¢d*z, =
Aexp(—¢ln|z|) dz, and F(AY_,) = A\d+ A F(—In|y|)e+... . Thus, from the functional equation,
we obtain A\, F(—Inly|) = yP + TRY, i.e.,

11
I‘oo(l-—e)=§€+§(’Ye+ln27r)s2+..., Tp(1-e) =7

n 2 =
F(=Inlylo) = P® + (3 + @18,  F(=Inlylp) =lnp- PP+ & 2130 (—ﬂf) %

2. ADELIC DISTRIBUTIONS

Consider a multiplicative quasicharacter on the group of idele classes AX/Q¥, i.e., a quasichar-
acter on ideles such that 6(g) = 1 for ¢ € Q*. It can be uniquely represented as #(z)|z|*, where
|z| =TI, |zv|. and 8(z) =[], 6.(z.); here, 6, are as above and 6, =1 for all but finitely many v.

The space S(A) of Schwartz—Bruhat functions consists of finite linear combinations of cylindrical
functions ¢(A) = [], ¢v(A\), where ¢, € S(Q,) is the characteristic function of Z, for large p;
hence, S(A) is a restricted tensor product of S(Q,). The Fourier transform F: S(A) — S(A) acts
“componentwise” on cylindrical functions, F: &), ¢p — ®p Pp-

The Fourier transform on &’(Ag) is defined via duality; it is a linear isomorphism both on &
and &'. There is also a convolution on S(A), which is related to the Fourier transform in a usual
way.

Tate distribution and finite parts. The adelic analogue of A}, is the Tate distribution
Asp € S'(A):

Asole) = f o@p@al* d's, dz=][d'z, @eSA).
Ax ¥
The integral converges for Res > 1. Consider an entire analytic distribution

Aty(p) = / (2)6(z)|z[* d"z.
|z[>1

The following equality gives an analytic continuation of A; g to the whole C except s =0 and s = 1
for trivial 8 where the Tate distribution has simple poles:
2(0) (0
Asalp) = Agle) + AT 5(P) +e6 <__i - —) -
Here, €4 equals 1 if 8 is trivial and O otherwise. (The above formula follows from the more general
considerations given below; see also [2, 11].)
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218 Ya.M. RADYNA, Ya.V. RADYNO

Definition. Two poles are possible in the adelic case. So, we define adelic finite part distribu-
tions Ppg and P; ¢ as the zero-order coefficients of the Laurent series for A;9 at s =0 and s =1,
respectively:

Pos(p) = —8(B)es + Agp() + A5(3):  Pro(e) = —d(p)es + AT p() + A7 5(P).

This definition immediately implies the following theorem.
Theorem 2.1. Two adelic finite part distributions are Fourier dual:

FPoo =Pz  FPio="Pyy

Adelic distribution Ayg. Consider a function g: Ry — C, Ry = (0, +00), and a character 8
on idele classes as above. For now, we impose only one condition on g, namely, that it is locally
integrable on R, and defines a tempered distribution there:

9 € LY*(Ry) N S'(Ry). (A)

For example, g(t) = vtInt will do. We define

Agal) = / BN N, v € S(A).

AX

Let us formally calculate Agg(yp) for cylindrical (A) = [], vu(A,) € S(A). To this end, we
partition the domain of integration into cosets ¢T', ¢ € Q*, T = Ry x [[, U, where Uy, is the p-adic
unit sphere. (Any idele A can be uniquely represented as gAg, where ¢ € Q* and A\g € T; 50, T is a
fundamental domain under the action of Q* [2].) Thus,

[empanaa= [ e

AX 9€Q* (gR4)x]1,, (gUp)

The function |A| on ¢T depends only on A, and equals H—H— so, we proceed to

S [ eattetiee(h=) o =TT 0)505)

9€Q* (4R4)x]1,, (aUp)

N Bo(q) / ( °°'°°><p°°(,\°°)d*,\oo 11 / GO |- ()
P qU,

qu"

Remark. For large p, the local ¢, is the characteristic function of the unit ball. If ¢ has such p
in the prime decomposition of its denominator, then Z, N qU, = @, and the integration yields zero;
i.e., the sum above does not contain a term for such q.

The application of the above formula to ¢()) = [, w.(A,) and g(t) = I(g,1)(t) yields a divergent

series
[ki

Z /exp(—vrtQ) drt,

k€Z\{0} {

and we can see that problem arises from the integration near zero in the real term.
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DISTRIBUTIONS AND MNEMOFUNCTIONS ON ADELES 219

Theorem 2.2. If suppg C [T,+00) for some T > 0, then Agg¢(p) is well defined by (x).
Indeed, the inner product over p is estimated as

H /OP(’\P)‘PP()‘P)C{*AP

P qUp

< max < 400.
];_[’\}’GQP |‘Pp()‘p)|

We have supp ¢, C p*?Zy, a, € Z, and a, = 0 for almost all p. Define Q = [, p®. If g ¢ %Z\ {0},
then the corresponding term in (*) vanishes, and we obtain

S 0@ / (B2 s athce = / +Z°° (%) (o) + b=t .

€ 52Z\{0}

The distribution "7 g(Qt/k) has support in [T/Q, +00) and is tempered. Thus, the theorem is
proved.

By this theorem, AT 0.0 is defined as Ao, where f(t) = Ijj +00)9(t) is a regular distribution. To
regularize the distribution A, g, we will use the following Poisson-Tate summation formula [2] (the
general Poisson summation formula applies to any locally compact group with a discrete subgroup):

Sea = oF(3),  eesm), rea
9€Q q€Q

Denote ®(g,8) = Ay () and divide the integral for ®(g, ) into two parts:
3(9,0) = &*(3,6) + 37(5,0) = ( [+] ) (MO (IA) d* .
A2 pi<a

The strictness of the inequality signs does not matter here because {A € AX: |\| = 1} has zero
measure.

A rational number ¢ € Q* acts on {A € A*: [A] < 1} via ¢: A — gA. The corresponding
fundamental domain is E = (0, 1] x ][, Up. Using the Poisson-Tate summation formula, one obtains

7 (g,0) = [ D w(aN8(gNg(lgr) d*A
E 9€Q*

5 /( 2.7 ( )) (’\)IAI (I/\I)d*Hcp(O)/G(A)g(Ik\!') d*A—cp(O)/o(,\)g(|A|)d*,\.
E \ 9€QX &
Changing the variable A — 1/ in the first integral, one has
/ ( > #(3 ))9(f\)[/\|g(lz\l)d“/\= / ( % a(qx))ewmg(w)du
E \ qeQX B1 \ geQX

Observe that g(|A|) does not depend on A, for all p. For nontrivial ¢, the second and the third
integrals are zero. So, the whole thing reduces to

5(0,0) =860 +p(0) [ Lare—cap0) [oa
(0,1] (0,1]

where g7 (t) = tg(t™!) and 9 = 1 if § = 1 and 0 otherwise.
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Thus, A, ¢ is well defined for nontrivial 8. To define it for § = 1, we should assign values to the
second and the third integrals. Assume that

/%)—d"t, /g(t)d*t have values. (B)
(0,1 (0.1]

Remark. When g(t) = t°, the integrals in (B’) represent analytic functions (s —1)~! and s,
and we come to the formula for analytic continuation used in the previous subsection.
Fourier transform and functional equation. The distribution A4 belongs to §’(A) and
has a Fourier transform. To write it down in a suitable form, we assume that
T
t
/ g’ (t)d"t, / %—) d*t have values. (B")
(0,1] (0,1

Subtracting two regularization formulas for &= (g,6) and &= (g7, ), we obtain the following formula
for the Fourier transform (functional equation):

8(9,0) = ®(g",8) + £90(0) / g(tt—)d"t+ / g (t)d"t | — es3(0) / g(t)d*t + / %(t)d‘t

(03] (0.3] (0,1] (0.1]
_ T g(t) * o *
= ®(g7,6) + eg(0) = d*t — e¢(0) g(t)d*t.
(0,400) (0,+00)

The integrals in (B’) and (B”) exist when g is compactly supported on (0,+0c0) or g € S(Ry).
As a consequence, we have the following statement.

Theorem 2.3. Any Schwartz-Bruhat function on the group of idele classes w € S(AX/QX)
can be regarded as a distribution on adeles; i.e., there is an embedding S(AX/Q*) — S'(A).

Indeed, considering the Pontryagin dual of A*/Q* = T, we see that any such w@ is a finite linear
combination of g(Ax) € S(R4) twisted with a multiplicative character 8 as above.

Fourier transform of specific distributions. Let

_ 5 te (01,
g(t)—{tﬁ, t € [1,400).

Then,

t1-8, te(0,1],
gT(t) =, i ( ]
tt=e, te[l,4+00),

nd
a 86 =36+ 00 (725 - 577) - 70 (3 - 3)-

Here, we applied the analytic continuation in o and f3; they should not be 0 or 1. When a = £, we
obtain the Tate formula ®(t*) = &(¢1~2).
For the characteristic function of a segment g(t) = Ija4(%), a,b > 0, one has

$(Iioy) = @(t I p1/a) + 2(0)(Inb — Ina) — 3(0)(b — a).
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DISTRIBUTIONS AND MNEMOFUNCTIONS ON ADELES 221
For g(t) = t* h(t) depending on s € C, our functional equation simplifies to
B(e* h(®) = B ht™)) + $(O)(Mh)(s — 1) - FO)(Mh)(s),

where (Mh)(s) stands for the Mellin transform of h at s. In this case, we can apply the analytic
continuation in s. For example,

B(tet) = d(t e V) + (O)(s — 1) — FO)[(s), s#1,0,—-1,-2,...,

s=1

~( t° L ma’ v 1 _  war!
@(a = tf) = (I)(a = t-') + ‘P(O)rsin ﬂsr_l: - w(o)rsin = a>0, sé¢rl.

3. MNEMOFUNCTIONS ON @,

Denote by B, = p™"Z, C Qp, n € Z, a closed ball of radius p™ centered at 0.

The space of Schwartz-Bruhat functions S = S(Q,) consists of ¢: Q, — C satisfying the
conditions

(1) L€ Z: (x—y) € By = p(z) = ¢(y) (local constancy);

(2) 3k € Z: suppy C By (support is compact).

Define the spaces
Sp={p: (z-y) € B-a= p(z) = ¢(y), suppf C Bp}, n=0,1,2,....

Then,

(1) S, is finite-dimensional over C, dim S, = p?™;

(2) n<m=8,C8m UneoSn=35;

(3) the space S is the inductive limit of Sp,: S = limind,,— o0 Sp-
Equipped with the topology of inductive limit, S is a locally convex algebra with pointwise opera-
tions.

Let us fix a norm || - || on S, say, [l¢|| = sup,eq, [¢(z)| (all norms are equivalent on each S,

because of its finite dimensionality). Let A: 0 < A\g < A; < A2 < ... be an increasing sequence of
real numbers. We define a seminorm 7a(f) of f € S as follows. We choose a minimal n such that

f € Sn. Then, ma(f) = MIf]l-
Theorem 3.1. The topology of S is given by a family of seminorms 7 indexed by all increas-
ing sequences. This topology is not metrizable.

Algebra of Egorov-type mnemofunctions. Consider an algebra Gps formed by all se-
quences from S(Q,) and an ideal N' C G consisting of finite sequences:

gM = {g'_' (90,91,92’---)3 9n ES(Qp)) n=011721"'}1

N ={g€Gu: 3Im¥n2>m= g, =0}.

Definition. We define an algebra of Egorov-type mnemofunctions on Q, as the quotient algebra
G = Gu/N. (A similar quotient algebra consisting of smooth functions on R with an ideal of finite
sequences was considered by Egorov [5].)

Definition. We define a canonical §-sequence as
bn=p"Ipmz, €S, n=012,....
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The sequence 6, converges to the p-adic Dirac § weakly in the space 8’ = §'(Q,) of Schwartz—
Bruhat distributions. The Dirac ¢ is given by (6,¢) = ¢(0), ¢ € S. The Fourier images b =
Fé, = Ip, converge weakly to a constant function equal to 1.

Definition. We define a regularization operator R: 8' — Gy and an embedding 7: 8’ — G of
the linear space of distributions into the algebra of mnemofunctions by

R:uwr R(u) = ((wx o) - b0, (u*8y)- 81, (uxb2)-ba,...),
7:um [R(u)]; here, [R(u)] = R(u)+ N is a coset in Gps.

Note that R(u), = (u * 6y) b= (u- En) x 0, € Sp,n=0,1,2,..., and R(u) converges to u
in §’. Thus, the regularization operator maps any distribution to specific sequence of functions in S
that converges to this distribution. The separability of S’ yields the injectivity of the embedding 7.

Remark. As in the case of mnemofunctions containing S'(R) [7] and D'(R) [8], other regular-
ization operators are possible, for example, R(u), = (u*y) - &n, where ¢, is a d-sequence different
from 6,. Our definition of the regularization operator allows us to reach agreement between the mul-
tiplication of distributions by locally constant functions and the multiplication of mnemofunctions
(Theorem 3.4), as well as between the Fourier transform of distributions and the Fourier transform
of mnemofunctions (Theorem 3.6). These results do not hold in general for another regularization
operator and have no immediate analogue for mnemofunctions with real domain.

Example 3.1. The distribution § is represented by the mnemofunction
R(6) = (0,01,02,...).

Example 3.2. The homogeneous distribution Ay, s ¢ —14 257, is represented by the mnemo-

Inp
function
-—an

. P
R(A)n=(1-p7") llxlg Ip\B_, + T —_oi=e —pi-a Ig_,.
Example 3.3. The Vladimirov finite part 'PE}E is represented by the mnemofunction
R('PEII;)n = le;l Ig\p_,(x) = (1 - p Hnp" Ip_, (z).
Example 3.4. The locally integrable function In |z|, € L'°°(Q,) yields the mnemofunction
R(n fe}p)n = Infaly - Ig\5_,(2) = (0 + (0= 1)) Inp-Ip_,.

Example 3.5. A multiplicative character @ is a locally integrable function on Q, and defines
the mnemofunction

R(0(z))n = 6(z) Ap,\B_,(2)-

Remark. In the cases of S’(R) [7] and D’(R) [8], we can embed distributions into rather small
algebras of sequences of elements from S(R) and D(R), respectively. These algebras are formed of
sequences g, such that, for any seminorm 7 (on S(R) and D(R), respectively), a sequence 7(g,)
grows at most polynomially; i.e., (gn) < f(n) for some polynomial f depending only on 7 and (g,).

In the p-adic case, we should not bound the growth of seminorms in the algebra of mnemofunc-
tions; otherwise, we cannot embed distributions into it.

Theorem 3.2. There ezists u € S'(Q,) (even u € L°(Q,)) and a seminorm m on S(Qp)
such that m(R(u)n) > An, n=0,1,2,..., for any given sequence An.

Indeed, let u = 6 be the character from Example 3.5. Without loss of generality, assume that
A = (\p) is a positive and increasing sequence. For a seminorm 7 on S, one has mp(R(u)n) = An.
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Multiplication of distributions and mnemofunctions. There is a p-adic analogue of the
Schwartz example that shows the impossibility of defining a product of distributions that reasonably
generalizes the multiplication of distributions by smooth functions.

Example 3.6 (contradictory equality).

0=0-|z|;* = (6(z) - |2f}) - |z[;? = 8(2) - (Izl; - |zl *) = é(2) - 1 = §(z).

Note that, for general u,v € &', there is no w € &’ such that 7(u)7(v) = 7(w). Multiplying
mnemofunctions, we go beyond our linear space. For example, it is impossible to imagine the square
of the § function as a usual functional.

There is a canonical embedding S — G: a — [(a)], (@) = (a,a,a,...) € Gy, in addition to the
restriction of the embedding 7: S — Gps.

Theorem 3.3. The embedding T is in agreement with the canonical embedding and the multi-
plication in the algebra S C &'; i.e.,

T(a)=[(@),  7(ab) =7(a)7(b) Va,b€S.

Indeed, the equality 7(a) = [(a)] is equivalent to R(a) — (a) € N. Take m such that a € Sy,.
For all n > m, one has R(a), = a. Thus, R(a) — (a) is finite and belongs to the ideal N.

The equality 7(ab) = 7(a)7(b) is equivalent to R(ab) — R(a)R(b) € N. One has R(ab) —
R(a)R(b) = R(ab) — (ab) — (a)(R(b) — (b)) — R(b)(R(a) — (a)) € N because each term belongs to N.

Consider an algebra £ of locally constant functions Q, — C, § C £€. In distribution theory, one
defines the product of u € &’ and a € € by the formula (au,p) = (u,ap) for any test functions
p €S.

Theorem 3.4. The embedding T is in agreement with the multiplication of distributions by
locally constant functions; i.e.,

r(au) = 7(a)T(u) Va€E, ueS.

Definition. Two mnemofunctions g and h are called associated if (g — h), — 0 weakly.

Let u,v € C(Qp) be continuous functions and uv be their pointwise product. In general,
7(uwv) # 7(u)7(v), i.e., R(uv) — R(v)R(v) ¢ N. However, the following theorem holds.

Theorem 3.5. For all u,v € C(Qy), R(uv) and R(u)R(v) are associated.

The following examples demonstrate the multiplication of distributions (or of the corresponding
mnemofunctions, to be more precise).

Example 3.7 (the square of the ¢ function).
R(8)% = (60,pb1,p°6a,...) =C-R(S),  where C=(1,p,p%...).

The “infinite” coefficient C here is a mnemonumber, i.e., an element of the quotient algebra of all
complex sequences with respect to the ideal of finite sequences.

Example 3.8 (product d - A4, a # —1).

p—om
R(8) R(Aa)=C:R(), where Co=7——7=, n=012....
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Example 3.9 (product A, -Ag). Let a,f € Cand o, B,a+ B # —1.

R(Aa) - R(Ag) = R(Bass) + C - R(6),

where
p—(u-}-l)n p-(ﬂ-l'-l)" p—-(a+ﬁ+l)n

— "————-
=D 1— B P T ] p-lathr)’
P P P

Chn ni==0.1,2.....

Example 3.10 (product of homogeneous distributions). Let 6; and 63 be multiplicative char-
acters, a, 8 € C, 6,65 # 1, a, 8 # —1. In this nondegenerate case, the additional é-term disappears:

R(Aa,gx) ' R(Aﬁﬂz) = R(Aa+ﬁ,9192)'

Fourier transform and convolution. There are a Fourier transform F and a convolution x
defined on S that have usual properties. The Fourier transform of u € &' is defined by duality,
(Fu, ) = (u, Fo), p €S.

Definition. The Fourier transform Fys on Gy is defined componentwise,

Fum: Gm — Gum: (90,91, 92,--.) = (Fgo, Fg1,Fg2,--.)
F: G—G: [(fa)l = [F(fa))-
Since Fpr(N) = N, we have the well-defined Fourier transform F: G — G.

Theorem 3.6. The Fourier transform on G is in agreement with the Fourier transform on S’,
L.e.,

F(r(u)) =1(Fu) VYuels'.

This statement follows from the equality
F((ur6n)-8,) = (Flux8a) % (Fon) = ((Fu) - 8,) % 6 = ((Fu) * 8n) - p.

The problem of defining a convolution on &’ (i.e., a bilinear map x: &’ xS’ — &) that reasonably
continues the convolution on S reduces, with the help of the Fourier transform, to the problem of
defining a product of distributions, which has no solution inside S’.

Definition. Let us define a convolution on Gy and G as follows:
*: Gm X G = Gum: ((fo, f1s f2,-- ), (90, 91,92, - - ) = (fo* go, fr * 91, fa % g2, - ),
*:Gx G —G: ([(£)): [(9a)]) = [(an) * (gn)]-
Theorem 3.7. The convolution on G is in agreement with the convolution on S; i.e.,
T(axb) = 7(a) * () Ya,b € S.

(G, *,+) is a convolution algebra isomorphic to (G, X,+), and the isomorphism is given by the
Fourier transform.
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4. MNEMOFUNCTIONS ON ADELES

In this section, we embed the linear space S’(A) of Schwartz—Bruhat distributions into the
algebra of adelic mnemofunctions.

Separating Archimedean and non-Archimedean places. In the case of adeles, we can
see that the Archimedean (real) place stands apart from the non-Archimedean places. It is natural
to study these latter places together. A group of adeles splits as A = R x Ao, where Ay is a group
of discrete adeles [4].

We can represent the Schwartz-Bruhat space as a tensor product (over C):

S(A) = S(R) ® S(Ao).

The space S(Ag) of Schwartz-Bruhat functions on discrete adeles is a restricted tensor product of
S(Q,) and can be represented as an inductive limit of finite-dimensional spaces in a way similar to
the local case of S(Q;) [4]. As a consequence, any linear functional on S(Ag) is continuous. On the
contrary, the space S(R) cannot be represented as a limit of finite-dimensional spaces.

A similar factorization exists for the space & = £(A) of smooth functions on adeles: £(A) =
E(R) ® £(Ag) (¢ belongs to £(Ay) if, for some neighborhood U C Ag of zero, z — y € U implies
w(z) = p(y)) and for the space D = D(A) of smooth compactly supported functions: D(A) =
D(R) @ D(Ap). Note that, because of the non-Archimedean structure of Ag, one has S(Aq) =
D(Ao). As a consequence, we have factorizations for the spaces of distributions D’(A), tempered
distributions S’(A), and compactly supported distributions £'(A):

D'(A)=D'(R)®D'(Ao), S'(A)=S'R)&S'(Ao), £'(A)=E(R)BE(Ao).

The first example of a mnemofunction algebra that contains distributions from D’(R) was intro-
duced by Colombeau [8]. Since then, algebras of this type on a real domain have been extensively
studied. A differential algebra containing tempered distributions from S’(R) with a Fourier trans-
form and a convolution was constructed in [7]. Let us denote it by G(*).

The algebra G(*) is a quotient algebra Q;&") JN() where Qﬁ,'f) consists of all g, € S(R)N such
that, for any seminorm 7 on S, m(g,) grows no faster than n® for some a, and N/ (0) ¢ Q,(\;o) consists
of all sequences such that 7(g,) decreases faster than n® for any o € R.

A regularization operator R,: S'(R) — g,‘(f) is constructed as follows. For ¢ € S(R) such that
¢ > 0 and [; p(t)dt = 1, we consider a d-sequence p,(t) = np(nt) and assume that Ry(u), =
(u * ¢n) - &n. Note that there is no canonical é-sequence in the real case; therefore, we should
consider the whole family of regularizations.

Let us introduce a mnemofunction algebra on discrete adeles. Then, we can glue together the
Archimedean and non-Archimedean places to obtain mnemofunctions on adeles.

Egorov-type mnemofunctions on discrete adeles. Consider a subset V] = I'[p Zp C Ao.
A family V,, = nVj, n=1,2,3,..., indexed by positive integers N, forms a basis of neighborhoods
of zero in Ag. The embedding V;, C V, holds if and only if n divides m. In fact, Vj is a ring of
principal ideals, and its ideals are exactly V,.

A family of sets {m: m is divisible by n} C N, n € N, is a filter different from the usual Frechet
filter on N. We will write n — oo assuming this filter. Being a basis of neighborhoods of zero, V,
also forms a filter isomorphic to the one just considered.

Definition. As in the p-adic case, we define an algebra of Egorov-type mnemofunctions on
discrete adeles G(¥) as the quotient algebra g}fj) JN©) where g}ﬁ’ consists of all sequences of elements
of S(Ag) and N consists of finite sequences.
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Definition. We define a canonical §-sequence as
0n(z) = nly, (z) € S(Ao).

Its Fourier transform 5; = Iy % forms a 1-sequence.

There is a simple relation between adelic and p-adic canonical é-sequences. Let n = Hp p°? be
a prime expansion of n, where all but finitely many o, equal 0. Then,

on(z) = ® 5ap (xp),

where d,(z) € S(Ao), da, (zp) = p*? Lyerz, (zp) € S(Qp), and do(zp) = Iz,(zp) is the characteristic
function of p-adic integers.

Definition. A regularization operator R: S8'(Ag) — Gum and an embedding 7: S'(Ag) — G are
defined as follows:

R(u) = ((u%61)- 01, (u* ) - 8ay..,(utdn) - 8ny...),  7(u) = [R(w)] = R(u) + N.

As in the local case, the regularization operator maps a distribution to a specific sequence of
functions from S that weakly converges to this distribution.

Theorem 4.1. The embedding 7 is in agreement with the canonical embedding S(Ag) — G:
a+— [(a,a,a,...)] and with the multiplication on S(Ao); i.e.,

7(a) = [(a;a;8,::); 7(ab) = 7(a)7(b) Va,b € S(Ao).

In the standard distribution theory, one defines the product of a distribution u € S’ and a locally
constant function a € € as follows: (au,p) = (u,ap), ¢ € S.

Theorem 4.2. The embedding T is in agreement with the multiplication of distributions by
locally constant functions; i.e., 7(au) = 7(a)7(u) Va € &, ue S'.

Example 4.1. The Dirac § is represented by R(6) = (61,82, ...,0n,...). Its square is R(§)? =
(01520050 50550000 )5

Definition. We define a Fourier transform and a convolution on Gy componentwise,

F(91,92,---) = (Fg1,F g2, ), (f1, foy. ) % (91,92,...) = (fr*g1,...)-

This yields well-defined Fourier transform F and convolution % on G.

Theorem 4.3. The Fourier transform on G is in agreement with the Fourier transform on &',
and the convolution on G 1is in agreement with the convolution on S; i.e.,

F(r(u)) = 1(Fu) Yues, T(a*b) = 1(a) x7(b) Va,beS.
(G,*,+) is a convolution algebra isomorphic to (G, x,+), and the isomorphism is given by the
Fourier transform.

Gluing Archimedean and non-Archimedean places.

Definition. We define a mnemofunction algebra on adeles A as the tensor product (over C)
G() & g0

Theorem 4.4. The algebra G @ GO with the Fourier transform and convolution contains
the space S'(A) of Schwartz-Bruhat distributions as a linear subspace.
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