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1. p-adic numbers and integral on Q,

The aim of this paper is to develop some mathematical methods which will be useful
for the development of quantum models on the group of »nite adeles. This paper is
purely mathematical, so we do not plan to go into details of possible applications in
mathematical physics, see, e.g., [1]- [25].

This part deals with main notions and facts of p-adic analysis we need further. For

proof we refer to books [26] and [9].

Let us denote N, Z, @, R, C sets of positive integer, integer, rational, real and complex
numbers respectively, Ry = {z € R: z > 0}.

Let p be prime, z € Q. Then z = p’V(“’)ﬁ‘- , m,n,vy € Z, where m and n are not divisible
by p.

Let |z|, = p~ 73, 0], = 0. Then |z], is the valuation on Q) satisfying strong triangle
inequality |z + y|, < max{|z|,, |yl,}. The completion of Q with respect to |-|, is denoted
Qp or Q, and called »eld of p-adic numbers. It is also assumed Qo = R.

Each element of z € Q,, has a unique representation z = p" @ (zg +z1p+ 20p% + ...)
0 < zx < p — 1. The fractional part of z is number

0, ify(z)>00rz=0

- 1.1

{=} {p"(a:o + ot Ty pY), i y(z) < 0 (11)

For any z € Qp, the number {z}, is rational. The following equality holds for the
fractional parts

{z+ylp={z}p+{y}p— N, N=0orl; z,yeQ,. (1.2)

Let us denote Byla;p"] = {zr € Q, : |z —al, < P}, Bp(a;p") = {z € Q, : |z -
alp < P}, Spla;p?) = {z € Q, : |z — al, = p7}. We also assume B,[p?] = B,[0;p"],
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BulpY] = B,[0;p], Sp(p?) = Sp(0:p7). Z, = Bypl[l] is additive subgroup of @, called
p-adic integers, Q) = Q, \ {0} is multiplicative group. Unit sphere U, = Sy(1) is a
multiplicative subgroup of Q7.

For any set K let us denote its characteristic function

1, zeK,
AK(x)z{o s¢ K

Theorem 1.1. @, is locally compact totally disconnected Abelian topological group

under addition and Z, is its compact subgroup.
Recall that a topological space is called totally disconnected if a connected domain of

each point consists of that point itself.
An additive character of group @, is any continuous complex-valued function x; de-
»ned on Q,, satisfying condition

xp(T+9) = xp(@)xp(¥)y p(®) =1, 7,9y € Q.
Theorem 1.2. Additive characters of Q, with pointwise multiplication form a group
isomorphic to Q,. Isomorphism is given by mapping
£ xp(Ez) = (D, (13)

So far as @, is an Abelian locally compact group, there exists shift-invariant Haar
measure dr, on Q,. We normalize it with the condition

dz, = 1.
Zy
Let Q be measurable subset in Q,. We denote as usually Ly(9), 1 < ¢ < 400 set of
all measurable functions f(z) on Q such that

[ 1@z, < oo

If ©2 is open then the space Cp(f2) of all continuous functions on { with compact
support is dense in Ly(Q2), 1 < g < +oco0.

Let us also denote L;“(Q) the set of measurable functions f(z) on ) such that f €
L4(K) for any compact K C ! — not compact.

Here are some integrals we need further:

dz =7, dr=p'(1-2), 1€z, (14)
Bip] S(pv) p
- 1-p! 1 1-p!
z|* Vde = p* - / z|o dr = ———, Rea >0, 1.5)
/I;IPV) = 1-p™" Jan £ 1=p~ (
p?, Kl <p™
rp(éx)dr = PSR s (1.8
-/1;[;"-‘) 5%) {0, il, >p P )

a—1 1 _pa——l —Cx
/(;,, I:I:lp xp(§x)de = = |€|p , £€#0,Reax>0. (1.7)

2. Locally Constant Functions on Totally Disconnected Locally
Compact Group
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Here is an impotent de»nition of a locally constant function.

Let X be a Hausdor« space. A function f: X — R is called locally constant at point
x € X if there exists neighborhood U, of point = such that f|y_, the restriction of f onto
domain U,, is a constant function. Function f is called locally constant if it is locally
constant at every point r € X.

Note that all locally constant functions are continuous. An example of such a function
is a characteristic function of clopen (closed and open at the same time) U C X.

The following theorem describes all locally constant functions.

Theorem 2.1. A function f : X — R is locally constant i« X =|,c; Ui, where U;
are clopen subsets in X and f is constant on U;. Here and below we denote | |;c; U; the
union of non-intersecting sets Uj.

Proof. The sub ciency of condition is obvious. Let us proove the necessity. Let (a;)ier
be the range of a function f. Let’s consider a set U; = f~(a;). It is a closed subset of X,
because f is continuous and {a;} is closed in R. Thus X = | |;c; Ui. Let z € U;. There
exists neighborhood U, of z such that f|y, = f(z) = a;, that is U, C U;. It implies that
U, is open. ¥

Corollary 1. Let X be a compact space. Each locally constant function f: X — R
takes only a »nite number of values.

Corollary 2. The existence of non-trivial locally constant function on X (i.e. not
constant) implies that X is not connected.

Below at this part we assume that X is Hausdor« totally disconnected locally compact
and o-compact Abelian topological group. (2.1)

Recall that a topological space is called o-compact if it is a countable union of compact
sets.

Note that such spaces X are paracompact and there exists a continuous partition of
unity. Let’s show that the condition (2.1) implies the existence of the locally constant
partition of unity on X.

Theorem 2.2. Any X satisfying (2.1) has a basis of neighborhoods of zero consisting
of open compact subgroups (V;)icr-

Let us denote C(X) the set of all continuous (real-valued) functions on X, Cy(X) set
of continuous functions with compact support, £(X) the set of locally constant functions
on X and S(X) = &(X) (N Co(X).

Theorem 2.3. Let X satisfy (2.1). Then for any compact K and any openset U C X,
K C U there exists a »nite cover of compact K with non-intersecting open compact sets
(Ui)ISiSﬂ such that K C U?:l U; cU.

Proof. Let’s cover each point z € K with neighborhood z + V,(,), where V; is open
compact subgroup from basis of neighborhoods of zero (see theorem 2.2). We take V()
such that z + V() C U. The cover K C |J,¢ [z + V()] C U has a »nite subcover

K c | [zx + Vi) € U. (2.2)
k=1

Let us choose a open group V4 from the basis of neighborhoods of zero such that
Vo C ﬂ;:‘:l Vi(2x)- Thus X can be partitioned into factor-classes corresponding to Vg, i.e.
X =Uyexsvoly + Vol.

Asfaras Vp C ﬂz‘:l Vi(z4), each compact set xx + Vj(z,) can be partitioned into »nite
number of sets y + Vo, ¥ € Vi(z,,)/Vo. Inclusion (2.2) implies that there exists n such that
K C | ™, [yi + Vo] C U. The assertion U; = y; + V; »nishes the proof . &
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Corollary 1. For any compact K and any open set U such that K C U, there exists
a function @ € &(X) satisfying conditions: 0 < ¢ < 1, suppe CU and ¢(r) =1o0n K.
Proof. Example of such ¢ is

e(z) =Y Ay, (z),
k=1

where U; are clopen sets from theorem 2.3. X
Corollary 2. (Partition if unity). Let X satisfy (2.1), Q be an open set in X, (U;)ies
be cover of X with open sets. Then there exists a locally constant partition of unity
subordinated to cover (U;)ier i.e. there exists a family of locally constant functions (@;)ic s
such that
0< <1, suppp; C Ui,

the family {supp ¢ }ier is locally »nite and

Ecp,—(z) =1forallz € Q.
icl
Corollary 3. If X satis»es the condition (2.1), then S(X) is a dense subset of Cy(X).
Proof. Let f € Co(X) and K = supp f. Then f is uniformly continuous. That is
why for any € > 0 there exists an open and compact neighborhood V' of zero such that

z—y€V,z,y € K implies |f(X) — f(y)] < €. So there exists a sequence ay,...,a, € K
such that K C |, (a; + V) =i, Ui. Let us consider

() =Y fla:)Ay, () € E(X).

=1

For any x € K we have

n

|f(z) — o(z)]| = |Y_ [f(z) - f(a)]Au,(z)| < e W

=1

3. The Generalized Functions on Q,
Functions from S(Q,) = £(Qp) N Co(Qy) are called Schwartz-Bruhat functions.
The group of p-adic numbers Q) satis»es the condition (2.1). Thus the Corollary 3 of
Theorem 2.3 gives S(Q,) = Co(Q,). But always Co(Qp) = Le(Q,), 1 < g < +00. So we

obtain that S(Qp) = Lg(Qp), 1 < g < +00.
For each ¢ € S(Q,) we can »nd | € Z such that

oz +y) = p(z), lylp, <p"

The greatest of such integers | = I(y) is called the parameter of constancy of the function
. Let us denote S (Q,) the set of functions from S(Q,) with support being contained
in the ball B,[p"] and the parameter of constancy not less than . There is an inclusion

Sk cSvif N<N, 1< (3.1)

The Space S is »nite dimensional and dim S% = p™ ~!. Thus any of equivalent norm
of a »nite dimensional space can be introduced naturally.
In view of inclusion (3.1), the natural topology of S(Q,) is the topology of inductive
limit
e Tiemd s s 1
S(Q,) = }\1’12210%51\,, SN llnmr;gSN(Qp).
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The properties of S(Q,) can be deduced from the general properties of inductive limits
and the theory of topological vector spaces. They are gathered at the following theorem.

Theorem 3.1. 1) The space S(Q,) is a Hausdor« complete nuclear-convex Montel
space (thus it is a locally convex space yl.cs.).

2) For any l.c.s. X all linear operators A : S(Q,) — X are continuous.

3) Sequence @ € S(Qp) tends to zero in S(Q,) means

a) ¢r € Si(Qp), where N and [ do not depend on k.
b) (or — 0 uniformly as k — oo.

In particular, there is no unbounded functionals on S(Q,) and the adjoint space S'(Q,)
of p-adic distributions (generalized functions) is complete with respect to the strong
topology and sequentially complete with respect to a weak one.

Besides, the following statement holds. Any linear operator 4 : §(Q,) — S'(Q,) can
be given via its kernel-function, i.e. function K € S'(Q, x Q) such that

< Ap, ¥ >=< K(z,y), p(x)¥(y) >, » ¥ € S(Qp).
If ¢ € S(Q,) then its Fourier transform is de»ned by formula

Fe)e) = [ plo)x(Eads, (32)
¢
where x, is p-adic character given by (1.3).
Main properties of Fourier transform on S(Q,) are collected at the following theorem
[26], 19):
Theorem 3.2. A Fourier transform ¥ is a linear isomorphism of S(Q,) into S(Q,).
The following equalities hold: an inversion formula

o) = [ BOx(-ex)ds, (33)
Qp
Steklov-Parseval equality
[ v@w@iz= [ o@bi, (3.4)
Q, Q,
and one equivalent to (3.4)
[ v@i@ia= [ @iz, (35)
Qp Qp

According to the general ideology of topological vector spaces, duality theory and
equality (3.5), the Fourier transform of a generalized function u € S'(Q,) is desned as
follows

<Up>=<u,p> @eS(Q).

Theorem 3.2 implies that a Fourier transform F performs an isomorphism of S'(Q,)
into S'(Qp).

We have that S(Q,) C L2(Qp), S(Qp) = L2(Qp). Thus Ly(Q,) C S'(Qp). So we
may consider the restriction of Fourier transform ¥ : §'(Q,) — S(Q,) onto the domain
L2(Q,) and denote this restriction again as F.

Theorem 3.3. (|26], [9]). The operator F of a Fourier transform is unitary on La(Qp).

Let us consider some examples of the Fourier transform of functions >from S(Q,) and
S'(Q,) that we need below [26], [9]:

Apip(€) = p"Apjp-~1(6). (3.6)
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In particular,

App)(€) = A (6). (3.7)

Ay () = P Bpip-~)(€) — 0 A ppp—+1)(€). (3.7)
- | a—1

f =TTl Rea>o. (3.9)

Case a = 1/2 gives us eigenfunction ||, /2 of the Fourier transform with eigenvalue
A= —-p‘l/ 2,

4. Adeles and Ideles.

Let us consider the set A of all sequences of kind a = (2, a2, a3, as,...), where aq
is a real number, a, is p-adic numbers. In addition, all a, are p-adic integers beginning
from some p (this p may vary for the di<erent a). The set of all such sequences form a
ring with respect to a pointwise addition and multiplication. This ring is called the ring
of adeles, the additive group of the ring is called the group of adeles and is denoted A,
the multiplicative group A* of the ring A is called the group of ideles. Thus the elements
of group of ideles are sequances A = (Aso, A2, A3, ...y Ap,...), Where A, 5% 0 and |Ay], =1
for all p except a »nite number of indexes.

To de»ne topology on A* and A we consider the following procedure.

Let us consider a countable set of indexes P = {o0,2,3, 5, ...,p, ...} consisting of symbol
oo and primes. Let us denote P the set of all »nite subsets of P containing cc. The set P
is ordered by inclusion, i.e. for m, 72 € P we say m < mo if m; C 72. The set (P, <) with
order is directed. For any 7 € P let us denote

A(m) = Qo X H Qp x H Z,, additive group of m-adeles, (4.1)
pE™ pgn
AX(r) = QX x H Q, x H U, multiplicative group of 7-ideles. (4.2)
pE™ pgm

The inequality m; < 72, obviously, implies that the group A(m;) is a subgroup of A(ms)
( A*(m) is a subgroup of A*(m2) respectively). Thus
A=|JA@), A*=[JA*(@). (4.3)
peEP peP
For any 7 € P groups A(w) and A* () are endowed with a natural Tikhonov topology
of Cartesian product. Sets A and A* are endowed with topologies of inductive limits,
also known as a »nal topology :

A = limind A(7), A =limind A™(r).
meP TEP

These topologies are called adelic and tdelic respectively.
Thus the basis of the topology in A (A* resp.) consists of sets of the following kind

H Vp x H Z, (H W x H Up resp.), (4.4)
peES pgS peS pgsS
where V,, (W, resp.) are open sets in @, (Q, resp.) for any S € P.
Note. There is an inclusion A* C A C Hp Q, and topology of A* is stronger than
that of A, and the latter is stronger than Tikhonov topology of Cartesian product ]']p Qp.
Main properties of groups A and A* are collected at the following theorem.
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Theorem 4.1. 1) Groups A and A* are locally compact and o-compact. In particular,
they are complete.
2) The group A is dense in A.
3) Aset K C A (K C A* resp.) is compact in A (A resp.) i« there exist 7 € P such
that K C A(w) (K € A*(r) resp.) and K is compact in A(7) (AX(x) resp.).
4) a sequence of adeles (ideles resp.) a{™ € A (A(®) € A* resp.) tends to adele a € A
(A € AX resp.) if
a) a™ a € A(r) (\(®) X € A*(r) resp.) for some 7 € P;
6) a® — a (A(®) — X resp.) pointwise.
Proof. 1) The locally compactness of A and A is a direct consequence of the way

we introduced topologies in A and A*.
Let us check that A is o-compact. Let us consider a sequence of expanding compacts

in A numbered with 1 and primes:

K1 = ["1,1} X Zg X Z3 X ...
Ko=[-2,2] x27%Zy x Z3 X ...

Ky=[-77x2"7Z x 3523 x 57325 x T72Z7 x Z11 X ...

Obviously, A = U,, Kp. By analogy we can check that A* is o-compact.

2) Follows from the desnitions of topologies in A and A.

3) Let K C A be a compact set. Then K is predcompact. So for a neighborhood of
zero V = [—1,1] x I]p Zy, there exist a »nite number of points (z;)1<i<n(v) € K such
that K C ., (zi+ V). In view of (4.3), a »nite set 1, Z3, ..., Zn(v) is contained in some
A(r) and thus U:‘z(‘l/) (zi + V) C A(m). Besides, |JI-_,(z; + V) is compact in A(7). The
case of ideles is analogous.

5) This statement follows immediately from the previous one because any convergent
sequence a{® € A forms a compact set. X

Example 4.1. Sequence z{P) (numbered with primes)

z® =(0,..,0,p1,0,...) € A (number p~ ! has index p)

converges to z = (0,0, ...,0,...) pointwise. Nevertheless, it doesn’t converge in the topol-

ogy of A.

Example 4.2. An adele ¢ = (0,0,...,0,...) € A\ A* is the limit of the sequence
of ideles in A: z® = (1/p, 27,37, ...,p",1,1,...) € A*. But z(P) doesn’t converge in the
topology of A,

Below we consider only adeles and only the discrete part of them.

Let us denote Py = {2,3,...,p, ...} the set of primes and Py the set of all »nite subsets

of Py ordered by inclusion. For any w € Py, we denote

Ag(r) = H Q, x H Z, the additive group of »nite m-adeles (4.5)
peET pér
endowed with the natural Tikhonov topology. A group
Ag= | Ao(m) (4.6)

pEPy
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endowed with the topology of the inductive limit
Ag = lgrexijx’;d Ag(m) (4.7)

is called the group of »nite adeles.

Let us formulate all properties of the group of »nite adeles we need further.

Theorem 4.2. 1) Group Ay is locally compact and o-compact. The following topo-
logical equality holds

A = Qu X Ap. (4.8)

2) A subset K C Ay is compact in Ag i« there existsm € Py such that K C Ag(r) and
K is compact in Ag(7).

3) A sequence a{® € Ag converges to a € Ay i«

a) a™, a € Ag(m) for some m € Py.
b) a{® — a pointwisely.

4) Ay is a totally disconnected group.

Proof. Statements 1)43) are prooved in the same way as in theorem 4.1. The equality
(4.8) follows from the desnition of the topology in A and Ag.

4) Q, is totally disconnected. So is [], @,. We have Ay C [],Q, and the topology in
Aq is stronger than one induced from Hp Qp- Thus the identity mapping I : Ag — Hp Q,
is continuous. If there existed a connected domain in A consisting of more than one point,
then its image would be a connected domain in [],Q, but there isn’t such domain. X

5. Schwartz-Bruhat Functions on the Group of Adeles
The groups A and A are both locally compact Abelian. Let us denote dr and drq Haar
measures on A and Ay respectively. Here = = (Zo0, T2, %3, ...) € A, Tg = (22,3,...) € Ao.
These measures can be expressed via Haar measures dz, on Qp:
dr = dIoo 'd.’l?g S et dx,, - ... and d.']?g =dry-...- d.'L‘p e (51)

We assume that measures are normalized with the following conditions:

1
/dmOO:l, /d:l:p=1. (5.2)
0 Z

i

The formula (5.1) should be interpreted as follows: for any integrable function of an
adelic variable of the kind f(z) = foo(z) - fo(z) - ... the equality holds

[1@is= [ fulamdre: [ faaaldas- . (53)
A Q Q2
As a consequence of the formulas (5.1), (5.3) and (4.8), we obtain

dr = d.’L‘oo 2 d.’L‘Q.

Thus the problem of constructing an analysis (of continuous, integrable and generalized
functions) on the group of adeles reduced to separate problems 1) constructing an analysis
on R = Q4 and on the group of »nite adeles Ay; 2) constructing function theory on
Cartesian product A = Q4 X A.

Taking this into account, it is natural to give a special attention to »nite adeles Ag.
The purpose of this paper is to learn about the Vladimirov operator on the group of
»nite adeles. So from now on saying 'adele’ we mean only »nite adele. We write = =
(25 .oy Fipy ove) €00
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For any measurable set T C A, we de»ne in a standard way a Lebesgue spaces L, (T),
1 < g < +00. According to the construction of Haar measure all compact subsets K C A
are measurable. The space Cy(A) is dense in Ly(A), 1 < q < +o00. Group A satis»es the
condition (2.1), so all the statements of §2 is true for A. In particular, the space S(A) of
locally constant functions with compact support is dense in Cp(A). That is why

S(A) = Ly(A), 1<q< +oo. (5.4)
Let us denote
L(A) = {f : A~ C: f(z)- Ak(z) € Ly(A),V compact K}. (5.5)

Let us describe the topology of S(A).
The basis of neighborhoods of zero V in A consists of open compact subgroups

VN, = H p™N*Z, x H Zy,, K€V, N,€L. (5.6)
pEK p¢K

such that
v []@+w). (5.7)
i=1

Let us denote S{¥ (A) the set of a function f € S(A) such that

suppfCVand f(x+h)=f(z) foranyzreVheW (5.8)
A neighborhood W is called a domain of constancy of the function f.
Theorem 5.1. The space S} (A) is »nite dimensional and it has n(V, W) dimensions.
Proof. By Theorem 2.3 functions (Ayn(; +w))1<i<n form a basis of this space. X

Let us endow S¥Y (A) with the topology of Cy(A) given by a norm. Set V x V can be
ordered as follows:

(VW) < (V' ,W)ifVCV and W CW. (5.9)
Set (V x V, <) is, obviously, directed and
SY(A) c SW'(A) if (V,W) < (V',W'). (5.10)
In addition,
s@a) = |J sV(a). (5.11)
(V\W)
Thus S(A) is endowed with the topology of the inductive limit
R w :
S(A) = l?‘yw;'i Sy (A). (5.12)

This de»nition and general theory of locally convex spaces enable us to make the
following statements.
Theorem 5.2. 1) Space S(A) is Hausdor« nuclear-complete Montel l.c.s.
2) For any l.c.s X all linear operators A : S(A) — X are continuous.
3) Sequence @ € S(A) tends to zero in S(A) means
a) @ € SYY (A) where V and W do not depend on k.
6) wx — 0 uniformly.
Adjoint space S'(A) of distributions (generalized functions) on A is complete with
respect to strong topology and sequentially complete with respect to weak one.
Let us clear up the structure of functions from S(A).
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Theorem 5.3. Each function f € S} (A) is yylindricy, i.e. has a form
f(z) = fo(m2,23,...3p) - [ [ Az, (zq), (5.13)

>p
where fy is locally constant on Qg x Q3 x ... x @, for some p.
Proof. Without loss of generality we may assume that the domain of constancy W of

a function f has a form
W = H quZq X H Zq.
2<¢<p >p
A function f is constant on the subgroup W, = {0} x H‘pp Z, C W. Consequently,
f(@) = folz2,z3,...,2p) - Hq>p Az, (zq), where fp is a locally constant function with
compact support on Q2 X ... X @, (the topology of Q2 x ... x Q, induced from A coincides

with the Tikhonov topology of Cartesian product). X
Let us consider functions ¢(z) on A which can be represented as an in»nite product

o(z) = H‘Pp(mp)a x = (x2, 3, - ..) € A, (5.14)
P

of multipliers satisfying conditions:

1) ©p € S(Qp), peP;

2) @p(zp) = Az, (xp) for all except a »nite number of p.

Any »nite linear combination of such functions is called Schwartz-Bruhat function on
A. Let us denote Sy(A) the space of all Schwartz-Bruhat functions.

Theorem 5.4. The space Sp(A) of Schwartz-Bruhat functions coincides with the space

of locally constant functions S(A).
Proof. The inclusion So(A) C S(A) is obvious. Let us prove the backward inclusion.

If f € S(A) then f € S}¥(A) for some open compact neighborhoods (subgroups) of zero
V and W in A. According to the previous theorem 5.3

f(@) = fo(z2,73, ... %) - [ | Bz, (o),
9>p

where fq is locally constant on Qp x Q3 X ... X Q).
To prove the statement it is suBcient to show that a locally constant function fy :
Q2 x Q3 x ... x Qp — R is a linear combination of functions of the form

p2(z)...pp(x), where pg(zq) € S(Qp), 2<q<p. (5.15)

Let us denote G = Q2 x Q3 X ... x Qp, Z = (2,73,...,Tp) € G, with the norm
||l = max{|z2]2, ..., |Zp|p}. Assuming

p(z,9) = ||z -3l (5.16)

we turn (G, p) into an ultrametric space. The topology of G de»ned by metric p coincides

with the Tikhonov topology. Besides, an opened ball Bg(a,r) in G with the center
a = (as, ..., a,) and radius 7 > 0 has the following form

Bg(a,r) = Bg,(as,) X ... x Bq,(a,T). (5.17)
So let fg : G — R be a locally constant function with compact support supp fo and
let W be an open compact domain of constancy of function fy. Theorem 2.3 yields

n(fo)
supp fo = LI {z: + W} =K. (5.18)

=1
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According to the general theory, an open set W in the ultrametric space G is nothing
else than the disjoint union of open balls. The compactness of W yields the »niteness of
the union. Let us choose the ball of the smallest radius r and divide the other balls into
the balls of radius r. Thus we obtain the partition of the compact K:

m
K =| | Ba(@@;r).
j=1
There are a »nite number of balls Bg(a);r)1<;j<m of the same radius r. The function

fo is constant on each of them and takes the corresponding values ¢; (some ¢; may be
equal). Thus we obtain a representation of function f,() as linear combination

fol®) =Y €Ay, ry)(E)- (5.19)

5=1
Remembering (5.17) we »nish the proof
Bpan(E) = I Ap, @, (@) ©
2<g<p
This theorem and Corollary 2 of Theorem 2.3 imply that there exists a partition of

the unity on A with the Schwartz-Bruhat functions. That is why we can de»ne support

of any distribution u € S’(A) correctly.
Theorem 5.5 (Lemma of du Bua-Raimond). Let f € Li{*°(A) and

/ o(z)f(x)dz = 0 for all € S(A). (5.20)
A

Then f(z) = 0 almost everywhere.
Proof. In view of inequality

/A w<m)f<x>dm|5sup|¢<x)r- f(@)ldz, € Co(A),

supp ¥
we de»ne a linear continuous functional on Cy(A) with the formula

us(e) = [ V@) (@yis

So j15 represents the Radon measure on A. The equality (5.20) means that the measure
iy = fdz equals zero on S(A). Since S(A) is dense in Co(A), it gives that puy = 0, i.e.
u(z) = 0 almost everywhere. ¥

Corollary. The space L{°°(A) can be canonically embedded into S’(A).

6. Fourier Transform on the Group of Adeles
Let us de»ne a function xo of z = (22,23, ..., Zp, ...) € A with the formula

xo(z) = exp2mi(z2 + 23 + ...). (6.1)
The expression z3 + 23 + ... + Zp + ... should be considered modulo 1, i.e. as
{za}2 + {z3}3 + ... + {zp}p + ... (mod 1), (see. (1.1)). (6.2)
In other words,
Xo(z) = IIXp(xp)a (6.3)
P

where x,, are the additive characters on groups Q, (see §1).

11
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Theorem 6.1. The group of additive characters on the group of adeles A is isomorphic
to A itself. This isomorphism is given by the formula

§ = XO(&"')’
where xq is desned by (6.1). The expression
Ex =6z + i+ fp.'L'p s T (6.4)

is understood in the sense of (6.2).
For any ¢ € L;(A), its Fourier transform is desned as follows

(Fe)(E) = 3€) = /A o) xolEi (6.5)

Theorem 6.2. A Fourier transform J performs a linear isomorphism of S(A) into
S(A). The following equalities hold: the conversion formula

o(z) = /A FOxo(—Ez)dz, € S(A), (6.6)
Steklov-Parseval equality
/w&ﬂﬁﬁw§/ﬂﬂaﬂﬁ.¢M€SM) 6.7)
A A
and
[ etz = [ Gewien o es®). (6.8)
A A

Proof. Let () = pa(2)..0p(2p) - [145p Bz, () € S(A). The equality (6.3) yields

that N
P() = Pa(b2)--Bp(&p) - [ Bz, (&0)-
a>p
The inclusion @, € S(Qp) (Theorem 3.2) and equality sz = Ag, (Formula 3.7) imply
that @ € S(A).

The Conversion Formula (6.6) holds for any ¢ € L;(A) such that ¢ € L;(A). Since
S(A) ¢ Li(A) and FS(A) C S(A), we have that the equality (6.6) holds and ¥ is an
isomorphism.

The inclusion S(A) C L;(A) N L2(A) and the Pontryagin duality theorem yield (6.7)
and (6.8). ¥

Since the Fourier transform F : S(A) — S(A) is an isomorphism (Theorem 5.2) and
the Equality (6.8) holds, we can use the duality arguments of l.c.s theory and desne a
Fourier transform of a generalized function z € S’(A) with the formula

<#,p>=<u,p> p€S(A). (6.9)
That is F : S'(A) — S'(A) is de»ned as an adjoint operator for an operator F : S(A) —
S(A). That is why F : S’(A) — S’(A) is a continuous isomorphism in both cases of strong
and weak topologies in S’'(A).

The equality S(A) = Ly(A) implies Ly(A) C S(A). So we may consider the restriction
of F:S'(A) — S’(A) onto the domain Ly(A) and denote it again as F.

Theorem 6.3. The Operator of Fourier transform JF is unitary in L2(A).

At last, let us de»ne a multiplication of distribution » € §’(A) and a locally constant
function a € S(A) with the formula

<au,p>=<u,ap>, @€ S(A). (6.10)
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7. The Operator M, and its properties

Let & = (£2,3,...,&p,...) € A and a = (a2,03,...,0p,...) € R*® be an in»nite multi-
index. Let us de»ne a formal expression

j€1* = [T 1gl5” - (7.1)
P
Theorem 7.1. The Expression (7.1) supplied with the condition
lim apInp=0 (7.2)
p—o0

de»nes a function |£]* : A — R, »nitely almost everywhere on A. It belongs to LfI"‘(A),
1 < g < 400 if gap +1 > 0 but not to Ly(A) for any 1 < g < +o00.

Proof. The group A is locally compact and o-compact (Theorem 4.2). Let us consider
the following expanding sequence of compacts

Ky=2PZyx .. xp Ly x [[ 2, Ki=]]Z (7.3)
q9>p P
It covers A, i.e.
A=K, (7.4)

To prove the inclusion |¢|* € Lloc(A , 1 € q < 400 it is sub cient to show the sniteness
q

of integral
[ e (7.5)
Ky

~1
, lely e = T s M
- p~ (qap-{—l)

Indeed, we have (see (1.5))

as ap+ 1> 0. Thus
fs l—p*l 1
et =TT [ ettty = [l — ey (00> —7) (16
/I'(x P Zpl ? ’ P l<p (9ap+1) g q )

The latter product converges i« the following sequence converges

3 [m (1 = %) —In (1 = pqa;“)] : (77)

P
It is equivalent to the convergence of the sequence

Z[‘%ﬂﬁlﬁ—l]:zl [pqa,, } Z [everinP —1]. (7.8)

P
The Condition (7.2) yields
e?» P _ 1 = —qa, Inp + o(ap Inp). (7.9)
Putting (7.9) into (7.8) we obtain that the convergence of sequence (7.8) is equivalent to
the convergence of
1
Yy ek (7.10)
» p

But it is convergent due to the condition (7.2).
Thus apInp — 0 and & > —1 imply £|* € Lie(A), 1 < g < +oo.

13
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If |£]* belonged to Lg(A) for some 1 < q < +0o (of cause, we assume ap > —ﬁ), then
(7.4) would imply

[t dg = tim [ e ae (7.11)
A P JK,
According to (7.3) and (1.5) we have

-/Kp |€19% d¢ = ‘/2‘.’,22 €13%% dé3 - ... - L_sz m;ap de, - I'I /ZR €19 de, =

s>p

= 2(qa=+1)p_1_:_2.L o plaap+1)2 1=p! ) H 1-s"1 -
1—2-(eat1) ™ 1 - p-(@aptl) 1= 5-(a+1)
§>p

-1
— o(@aatlp . . (qep+12 TT_1-P _
=2 RS Ahid H 1 _p—(a,+l)
p

=2(qaa+l)p.“_.p(qap+l)2./K €] *9dg >
1

>p(q°”+1)2 / |€] *9dE — 0o as p — o0
K\

independently on the choice of g, 1 < g < +00.

Thus [£|* ¢ Lg(A) forall1 < g < +o00. K

Corollary 1. The function |¢|* de»ned with (7.1) supplied with the conditions (7.2)
and @, > —1 is »nite almost everywhere.

Proof. The conditions mentioned above yield |£|* € Lf,"c(A). Consequently, [¢]* is
»nite almost everywhere on every compact in A. The function |¢|® is »nite almost every-
where on A due to o-compactness of A. K

Corollary 2. The conditions (7.2) and e, > —1 imply |¢|* € S’'(A).

Note. From now on we assume the condition (7.2) to hold without special prescription.

Putting g = 2 into the equality (7.6) we obtain the »niteness of integral

/ €12 - 1 (€)] de,
A

where 1 € S(A) has the form
(©) = [ 82, (&).
P

In fact, we de»ned operator
A Lo(A) — Ly(A) : 9(€) — |17 ¥(€) (7.12)

with the domain D(A4,) = S(A).
On the other hand, in view of Theorem 7.1, we can desne an operator of a multipli-
cation on almost everywhere »nite measurable function |¢| :

Mo : La(A) — La(A) : p(§) — €] (€). (7.13)
This operator has the domain
D(M,) = {p € L2(A) : [¢]* ¢(£) € L2(A)}. (7.14)

It is well-known that the operator M, is self-adjoint.

Obviously, the operator A, is symmetric and (4,9, %) = ||Aa/21,b"2 > 0. In view of
Friedrichs theorem the operator A, can be extended up to a self-adjoint operator.

On the other hand the following theorem is true.
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Theorem 7.2. The operator A, (a > ~1/2) is essentially self-adjoint. Its closure
coincides with the operator M,.

The proof uses lemma.

Lemma. Let A be a closable operator with the domain D(A) dense in Hilbert space H
and let M be its closed extension such that their adjoint operators coincide, i.e. M* = A*.
Then A = M.

Proof. By the condition A C M, M is closed and M* = A*. It implies M** = A**.
The equalities A = A** and M = M = M** yield A=M. K

Proof of theorem 7.2. The operator A, is symmetric and, consequently, closable;
Ao C My, M, is self-adjoint and, consequently, closed. In view of lemma, it is sub cient
to show that A} = M} = M,. Let us take a pair of elements v, w € Ly(A) satisfying

(Aaﬂo’ v)Lz(A) = ((P, w)Lz(A)s Qe S(A): (715)
i.e. such that v € D(A}) and w = Av. In other words,
[ 1 eemerde = [ elemiene, veesa), (7.16)
A A
or
[ el - mat, Vo e S(A) (7.17)
, We have v, w € Lo(A) and |§]* € LY*(A) (@ > —1/2). Thus h(£) = |¢|*5(§) —W(€) €
L<(A).

According to the lemma of du Bua-Raimond (Theorem 5.5) the formula (7.17) yields
that h(£) = 0 almost everywhere, i.e. w(£) = |£|® v(£). Bearing this in mind, we obtain
from (7.16) that

D(AL) = {'u € La(A) : |€]% v(€) € La(A)}

and
Azu(€) = w(€) = |€]° v(€),

ie. AL =M, K
Let us »nd spectrum of the operator M,.
Theorem 7.3. Functions of the kind

¥(€) = [T v sy (&) (7.18)
P

are an eigenfunction of the operator M, corresponding to the eigenvalues

A= []p*". (7.19)
P

Here ¢, € R, N, € Z are some constants.

Proof. We are to show that the sequences ¢, and N, do exist.

The function 9(€) of kind (7.18) belongs to D(M,) i« ¥ € Lo(A) and |£|*%(£) €
La(A), ie.

AWKW@<+wHAKPM@W%<+w~ (7.20)
Formula (1.4) yields

290 2 = Np __1.-
Awmﬁ-U%LM;%-U@’“,» (721)

15
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2a
[l wer de = I o
=(Hcpp°r”") /A ¥ (€)I” dép. (7.22)
P

Thus the function 9(£) of the kind (7.18) belongs to D(M,) i« the following conditions
hold

2&,, = 2a, N, =
dgp = Hcpp /s(pr) dp

Y Nyaplnp < +o00 (7.23)

and
Hcf;’;pN’(l — 1/p) converges (not to zero). (7.24)
P
For any given a, > —1/2 such that a,Inp — +00 and selected N, € Z satisfying
(7.23) we can choose ¢, to ful»] condition (7.24). For example, the following one will do

1

¢p = p~No/2(1 ;)~1/2, (7.25)

Note, there are many sequences N = (Np)pep, Np € Z satisfying (7.23). For example,
all »nite sequences (Np)pep (i-e. vanishing for all but a »nite number of Np) will do.

To summarize, we have the functions ¥(§) of kind (7.18) satisfying the conditions
(7.23) and (7.25), A de»ned by (7.19) and the equality Map (§) = ¢ (£). Indeed,

May(€) = H lfpl:p HCpAs(pr)(fp) o= H 'Ep|:p CPAS(pr)“P) =
p 4

P

= [T cop™ > Ag(pme) (&) = (H p‘*""") (H %As(p”v)(fp)) = M(€). B
P P P

Theorem 7.4. The spectrum o(M,) of the operator M, (as ap, > —1) coincides with
the set of all non-negative real numbers o(M,) = R;.

Proof. The equality (Aa@, ¥)r,a) = ”Ao,/ch”2 > 0 yields o(M,) C [0, +00).

According to the theorem Teopema 7.3, set

A= {A P A= Hp"‘PN’, (Np) is »nite sequence of integers} C R4 (7.26)
P
is contained by point spectrum of the operator M,.
As spectrum o (M, ) is closed set, it is enough now to prove that A is dense in R,
As a logarithmic function performs homomorphism of Ry into R, it is enough to prove
the density of

V= {u ER:p= ZNpaplnp, N, € Z, (sum is »nite)} (7.27)
P
in R.
Let us denote hy, = o, Inp. We need to show the density of the set of the numbers of
the form
Z Nphy, (»nite sum) (7.28)
P



On adelic analogue of Laplacian

in R, supplied with the conditions N, € Z and h, — 0 as p — oo. It is simple. For any
€ > 0 let us take hp < €. AsR =| |ycz (Nhp, (N + 1) hy), then for any z € R there exists
Np(z) such that = € (Nphy, (Np + 1)hy), i.e. |z — Nphy| < hp <e. B

8. Vladimirov Operator on the Group of Finite Adeles

A pseudo-di«erential operator on the group of »nite adeles A is the operator A of the
following form

(Ap)(z) = /A a(€, 2)b(E)xo( ~€2)d (8.1)

acting upon functions ¥(z) € S(A). The function a(§, z), (€, € A) is called symbol of

operator A.
Viadimirov operator V, (o is multi-index) is a pseudo-di«erential operator with a

symbol |£|* (we assume the conditions (7.2) and ap > —1/2 to hold).
Thus

Vaolz) = /A €% o(E)xo(—Ex)dE,  o(z) € S(A). (8.2)

The operator V, is unitary equivalent to the operator A,, so we can state the following.
Theorem 8.1. the operator V,, with the domain S(A) is essentially self-adjoint. Its
closure (let us denote it V,, again) with the domain

D(Va) = {y € La(A) : [£|” p(§) € L2(A)}

is a self-adjoint operator with spectrum o(V,,) consisting of all non-negative real numbers
R;.

This investigation was started during the visits of Ya.V. Radyno to University of
Vaxjox, visits were supported by the Foundation for Cooperation with Former Soviet
Republics of Royal Academy of Sciences of Sweden and by the International Center in
Mathematical Modeling of VagjekUniversity.
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