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Abstract 
      An enormous number of data analysis methods 
and calculation techniques featuring well-defined 
optical experiments has been designed over the past 
century. However, only a small number of these tools 
has been systematized into a single analysis scheme. 
The extant methods of data analysis typically have 
separately been applied for particular fluorescence 
spectroscopy areas. This suggests creating a single 
integrated type of data analysis based on a variety of 
system objects (data sources, mathematical models, 
fitting methods, etc) to principally be used for all 
spectroscopy measurements of any molecular systems. 
We demonstrate the principles and structure of such 
integrated object–oriented conception      of  data analysis.
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Several fitting software packages, based on the presented data analysis approach, were 
constructed and applied to process time domain fluorescence, frequency domain 
fluorescence, and fluorescence correlation spectroscopy data.  
 
Introduction  
 The method of fluorescence spectroscopy is a trustworthy high-precision tool in the 
area of physical chemistry for studying chemical and physical processes [1]. A 
promising trend in the development of fluorescence spectroscopy methods involves the 
working�out of new data analysis techniques, which could significantly improve a 
degree of competence for the interpretation of parameters and characteristics of 
photophysical processes in complex molecular systems. The most commonly used 
methods of data analysis are: nonlinear least squares, deconvolution methods, target 
analysis, global analysis, maximum entropy method [2,3,4,5,6]. These methods often 
require wide range of specific conditions for a particular area of application as well as 
well�known analytical expressions to describe physical processes. Although these 
methods and corresponding analytical models frequently offer a considerable level of the 
physical interpretation, yielding rather high quality approximations for experimental 
data, they are often less effective during analysis of a complex molecular systems. 
Nowadays, new complex molecular materials must be investigated in more general and 
universal way using a superposition of data analysis techniques, applying whole range of 
known methods and models. More general integrated data analysis technique for 
fluorescence spectroscopy measurements is therefore required to satisfy all needs arising 
while researching new complex molecular materials.  
 In this paper we summarize the existing data analysis techniques and fitting models 
into a single integrated approach to be applied for a wide range of various experimental 
fluorescence spectroscopy measurements. This integrated approach combines a set of 
interacting software objects, incorporating all types of physical and mathematical 
models, fitting methods, error estimation methods, which can be transported or 
embedded into the analysis of various chemistry materials. The professional highly-
optimized Windows-platform software, designed on a core of the integrated data analysis 
approach, have been developed to process time domain fluorescence, frequency domain 
fluorescence, and fluorescence correlation spectroscopy data. Their applications are 
demonstrated to study the photophysical properties of thin films of porphyrin layers and 
of photonic dye-zeolite antenna materials.  
 
Integrated approach for data analysis  
 The fluorescence spectroscopy data may originate from different types of 
experiments, for example, time-correlated single photon counting, fluorescence 
correlation spectroscopy, time resolved frequency domain measurements, etc. Normally 
experimental data are represented by one or several statistical characteristics, e.g.           
� fluorescence intensity, autocorrelation function, distribution of number of counts, etc. 
 The core of the integrated data analysis concept is ability to process complex 
fluorescence data of any spectroscopic measurements in a unique and coherent way, 
whichever experimental design is used. It combines various experimental output 
characteristics to simultaneously analyze them by a unique model with a global set of 
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parameters. Integrity of this approach is based on so-called object-oriented open-
architecture principle: allowing to easily incorporate into the experimental data analysis 
new experimental designs, methods, physical and mathematical models in form of special 
software objects. The scheme of the integrated data analysis concept is shown in Figure 1 
and represented as a coherent system of the interacting software objects. Each object 
performs a separate task with a well-defined interface to the other objects from the scheme.  

 

 
 

Figure 1. Integrated approach for data analysis. 
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 The objects of the integrated approach are different experimental and calculated data 
sets, analytical and stochastic models, fit quality and target criteria, fit parameter linking, 
fitting methods, and methods for generation of initial guesses. In such scheme the data 
analysis can be represented as a sequence of interactions between different objects 
executed according to a predefined algorithm.  
 The block Measured data represents an experimental fluorescence set�up and 
provides directly measured characteristics, or calculated characteristics, derived from 
photon flows (the blocks Measured photon flows and Calculated characteristics). 
Alternatively, for the reasons of testing data analysis algorithms and models as well as 
the effects of experimental factors, corresponding direct and indirect characteristics can 
numerically be generated in the blocks Simulated data and Simulated photon flows 
using computer simulation methods [7,8]. Experimental or simulated direct and 
calculated characteristics form the source statistical characteristics for the further 
analysis. Each source statistical characteristic is associated with a model, the blocks 
Model 1, Model 2, ..., Model N, having corresponding number of parameters. The 
models generate the theoretical data � the theoretical statistical characteristics, which 
complete forming the analysis data sets. The block Fit parameters linking provides 
the linkage of common parameters for different models and supplies the procedure of 
global analysis [9,10]. The analysis procedure adjusts the parameters of the model(s) in 
such way that to ensure an optimal value of the target fit criterion. Adjustment of the 
parameters is performed by a fitting method in the block Fitting method. The speed and 
quality of the integrated analysis are significantly depended on the initial values of the 
parameters for the iterative adjustment, which are calculated in the block Generation of 
initial guesses. Ideally these values should be as close as possible to actual values of 
physical parameters. As soon as the iterative adjustment has been finished one should 
make a decision about the appropriateness of estimated parameters. For this reason the 
final target fit criterion is accompanied by additional criteria (Fit quality criteria 
blocks): the plot of the weighted residuals, the plot of the autocorrelation function of 
weighted residuals, the runs test [3,11].  
 We note that this scheme is operable for the experimental data of any nature and 
mathematical models of any kind. Moreover, we are able within a single data analysis 
session to combine experimental data of different nature, provided that the correspondent 
models are available. Moreover, if such models (theoretical characteristics) possess a 
subset of the equivalent parameters, these parameters can be forced to be equal during 
the fit.  
 Now we describe the objects used within the integrated approach for data analysis. 
 
Models  
Analytical models 
 The experimental techniques of measuring the time-resolved fluorescence can be 
divided into two groups: for i) time domain and for ii) frequency domain.  
 

 Time domain. In time domain techniques, the sample is excited with a pulse of 
light. The width of the pulse is made as short as possible and is preferably much shorter 
than the lifetime of the fluorophore. The time-dependent fluorescence intensity is 
measured following the excitation pulse, and the lifetime is calculated from the slope of 
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a plot of logarithm of the fluorescence intensity. There are a number of time domain 
methods for time-resolved measurements [1,12]. One of the most favorite techniques is 
time-correlated single photon counting (TCSPC) [3,13]. The finite width of an excitation 
pulse and the delays in a detector make an actual decay, i.e. the impulse response of a 
fluorescent probe, convoluted with the instrumental function. The instrumental response 
function, measured via a scatter, is detected at the excitation wavelength instead of the 
emission wavelength of a sample [14,15,16]. Direct analysis of the fluorescence decay 
using that instrumental function may cause serious distortions due to discrepancy in the 
detection wavelength. Several techniques were proposed in order to eliminate the 
influence of the misshapen instrumental function [17]. Among them, one of the most 
common and rigorous is the reference reconvolution or δ-function convolution method 
[14,15]. This method suggests measuring fluorescence decay of the reference compound 
with the same absorption and emission wavelengths as those used for the sample. The 
fluorescence decay analysis is related then to that reference decay. 
 Frequency domain. In time-resolved frequency domain fluorescence measurements 
[1,18,19], the impulse function of the excitation beam as well as the response signal of 
the sample are intensity-modulated light. The response signal, that is, the fluorescence 
decay of the sample, is phase-shifted with respect to the impulse function and 
demodulated. If a set of impulse functions of the same amplitude but with different 
modulation frequencies is used, the response signal is the Fourier transform of the impulse 
response function, which characterizes the transfer system. If this impulse response 
function can be expressed as a sum of exponentials, it is not necessary to measure and 
analyze all quantities of the response signal. Instead, the phase shifts     alone allow the 
parameters of the multiexponential function to be determined. This is because of the 
special analytical form of the Fourier transform of a sum of exponentials [20, 21]. 
 In many applications the fluorescence decay obtained either via time domain or 
frequency domain methods can be adequately approximated by a sum of exponentials 
[1,3]. Numerous investigations [22,23] have shown that adequate models for electronic 
energy relaxation in macromolecules cannot be defined by the sum of exponentials, 
when a mechanism of dipole-dipole energy transfer is taken into account. In recent years 
most attention has been given to the stretched-exponential Förster decay law [23,24], 
representing the first-order approximation of dipole-dipole electronic energy transfer. 
When the concentration of donor molecules is sufficiently low, so that the probability of 
multistage energy migration processes is negligible and energy is directly transferred to 
the random distribution of acceptors, the donor fluorescence decay can be represented by 
a stretched exponential decay model [23].  
 Other analytical models for the fluorescence decays have been developed with the 
aim to reproduce the fluorescence response of the systems exhibiting different types of 
electronic excitation energy transfer [25,26,27], the compartmental systems [5,28], 
systems with the reactions in the exited state [29,30], diffusion-controlled reactions    
[31,32], excimer formations [33,34].  
 Fluorescence Correlation Spectroscopy (FCS) deals with relatively small-scale 
fluctuations of collected fluorescence from a very small volume by the tightly focused 
laser beam up to the nanosecond time range. To get the information about the sample 
under study the normalized fluorescence fluctuation autocorrelation function is 
calculated and analyzed [35,36].  
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 The earliest publications in the FCS field were devoted to the study of molecular 
diffusion processes and reaction kinetics, where a diffusion model for the autocorrelation 
function was introduced [37]. Further theoretical and experimental investigations 
demonstrated that molecular diffusion might be accompanied by additional processes, 
e.g. aggregation, concentration, chemical rate constants, and rotational dynamics, that 
also influence the fluorescence intensity [38]. To describe the molecular diffusion and 
other processes together, the diffusion model was modified and few new models for      
the autocorrelation function were developed for studying: FCS flows [39,40], 
conformational dynamics [41], triplet-state effects [38], external and internal protonation 
processes [42], chemical reactions [43]. 
 
Stochastic models  
 Stochastic models based on Monte Carlo simulation algorithms appear to be well-
suited for description of many physical processes in complex molecular systems [44,45, 
46,47,48]. Although a Monte Carlo model has been used extensively to test the validity 
of the approximations made in analytical theories, [49,50,51,52] its possibilities stretch 
much further. The simulation model is frequently served when the handling of analytical 
models remain unsatisfactory or can be mathematically very difficult. Modeling 
processes in molecular assemblies using Monte Carlo simulations has at least two 
advantages: it operates by the elementary processes, which are easy to understand and to 
program, and it gives direct insight to the relevant kinetic processes from the 
experimental complex data.  
 Different Monte Carlo models have been developed to simulate the fluorescence 
decay for: dye systems [8,27], the systems exhibiting various types of excitation 
electronic energy transfer [53,54,55,56], diffusion-controlled reactions and translational 
diffusion [57,58,59], singlet-singlet annihilation [60], recombination kinetics [61].  
 An improved Monte Carlo algorithm to investigate physical processes in molecular 
systems, based on the parameter fitting via Monte Carlo simulations, which does not 
require an analytical description to be known beforehand, has been reported [62,63]. 
There are at least four steps to be taken in this approach: (i) create a physical model 
(which includes the geometry, dynamics, etc.) of the investigated molecular system, (ii) 
develop and program a simulation model based on the physical model, with the model 
parameters corresponding to the various kinetic characteristics of the molecular system, 
(iii) find through parametric fitting an optimum set of parameters of the simulation 
model corresponding to the experimental data, (iv) calculate the reduced χ2 value for a 
quantitative determination of the accuracy of the simulated decay curve.  
 
Parametric estimation  
 A variety of approaches for fluorescence data fitting has been exercised with the 
different level of success [64,65]. Among them two groups are clearly prominent: 
iterative non-linear approach, directly optimizing some fit quality criterion (see the next 
section) by an optimization method, and non-iterative approach, based on the 
transformation of the detected decay to a linear algebraic set of equations with respect to 
unknown parameters.  
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 The approach of non-linear iterative minimization [66] is the most universal for 
fluorescence data analysis. However, the efficiency of this approach is often suffered from 
the badly chosen initial guesses. When the initial guesses are far from the true values of 
parameters, the convergence may be rather slow and, hence, time consuming. That is why 
general strategy in fluorescence data analysis may be composed of a non-iterative routine, 
generating initial guesses, and iterative procedure, starting search with those initials.  
 The main components of the iterative fitting are target fit criterion (TFC) and fitting 
method. The aim of the fitting or optimization method is to find a set of parameters   

 generated by theoretical models, which ensure the optimal value of 
the TFC. 
 
Target fit criterion  
 The TFC is usually derived from the Likelihood function : 
 

               (1) 
 
where xi, i=1,�,k are the experimental data values and  is the 
multivariate probability of the experimental values xi, i=1,�,k. If all xi, i=1,�,k are 
independent, equation (1) can be rewritten as:  
 

        
         (2) 

 
The maximum likelihood method requires values of the parameters a1, �, am to be 
chosen so that the above likelihood function is maximized. Further practical treatment is 
dependent on the experimental statistics, typically Gaussian, Poissonian or Multinomial 
statistics [67,68], which affects the shape of the functions  For the Gaussian 
statistics the equation (1) is  
 

              (3) 

 
where   is value of the theoretical characteristic in the i − th point of arguments 
space and σ i  is a standard deviation of the experimental value xi. For the Gaussian 
statistics of the equation (3) the maximization of  is equivalent to minimization of 
the following χ2: 
 

              (4) 

 

In practice the normalized quantity  is used, which, for the good fits, 
should be close to 1. 
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 Besides the final value of target fit criterion the additional fit quality criteria can be 
considered for judging the quality of the fit. Therefore all of them are devoted to the 
analyzing the results of comparison of source and theoretical data. Often the most useful 
fit quality criteria are: the plot of weighted residuals, the plot of the autocorrelation 
function of weighted residuals, normal deviation of  Durbin-Watson 

parameter, Runs test, Heteroscedasticity of weighted residuals, Normal probability 
function of weighted residuals [1,3,11,13]. 
 
Fitting methods  
 Fitting or optimization methods are employed for finding an optimum set of fit 
parameters that maximizes the conformity between source and theoretical characteristics 
in the fitting [69,70,71]. Each fitting algorithm uses a unique mathematical technique for 
changing the fit parameters. Commonly used optimization methods might be divided 
into two large groups: non-derivative methods, which do not require derivatives of the 
target fit criterion, and gradient methods, requiring derivatives of the target fit criterion. 
Among the non-derivative methods several classes are widely sited in the literature: 
Search methods [62,66,72,73] perform one-dimensional search with respect to each fit 
parameter (grid method, Hooke-Jeeves method, Powell method, Rosenbrock�s method). 
Simplex methods [73,74,75] construct a polygon (simplex) in the space of fit parameters 
and move the center of this polygon to the parameters point where target fit criterion 
value is best. Stochastic methods [76,77,78] use a search procedure based on the random 
determination of the search direction (random walk, Monte Carlo methods, method of 
�simulated annealing�). Application of the gradient optimization methods in comparison 
with non-derivative methods ensures faster convergence to the optimum value but 
requires calculation of first or second derivative of target fit criterion. The most 
frequently referenced gradient methods are steepest descent method of, Gauss-Newton 
method, and Levenberg-Marquardt method. [79,80,81]. 
 
Parametric fitting via Monte-Carlo simulations  
 The Monte Carlo fitting method does not require the analytical equation to be known 
beforehand, and it includes the analysis of statistical noise to judge the quality of the fit. 
Once the experimental time domain luminescence decay is collected, it can be analyzed 
by means of a Monte Carlo decay simulation, yielding the set of physical parameters of 
the system. The best fit is defined by a criterion (or set of criteria) that shows how far the 
simulated data deviate from the experimental data. Generally, such a criterion is 
represented by a function of the experimental and simulated data, and strongly depends 
on the particular application area, the particular simulation method, and the experimental 
conditions. According to this criterion the best approximation, corresponding to the set 
of parameters, is that which yields a minimum for the criterion. An example of 
application of the statistical χ2 criterion for fluorescence decay fitting using Monte Carlo 
simulations was reported in [63]. 
 An important point is that the Monte Carlo analysis may result in a local minimum. 
In general, an adequate determination of the parameters requires a check of their 
confidence intervals by the exhaustive search method [82]. It is impractical, however,   
to apply this, since it would result in a dramatic increase of processing time. The less 
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time-consuming, but also less accurate, asymptotic standard errors therefore 
recommended [83]. Another approach to considerably reduce the risk of landing in local 
minima is the application of the Monte Carlo confidence interval evaluation method, 
which is more time-consuming, but still not extensive [84]. 
 
Initial guesses 
 Whereas iterative fit methods are common and can be applied to virtually any 
model, the methods for generating initial guesses are essentially model-specific and must 
be developed for each particular model. We briefly outline here only the references to 
the generation of initial guesses for a stretched exponential model and a multi-exponential 
model as most commonly used. The algorithms of initial guesses generation for the 
stretched exponential models are considered in [85]. Different approaches to generate 
initial guesses for a multi-exponential model are considered in [86,87,88,89,90].  
 
Time resolved fluorescence and fluorescence correlation 
fitting software  
 The integrated object-oriented approach presented in previous sections was taken as 
a core to develop software products. These software packages are designed for data 
analysis in area of time-resolved fluorescence and anisotropy measurements, time-
resolved frequency domain measurements, and fluorescence correlation spectroscopy 
measurements. 
 All software packages provide simultaneous data analysis of more than one source 
characteristic. The data analysis procedure is developed on the base of on the χ2 target fit 
criterion. The Levenberg-Marquardt [91] minimization algorithm is used as an 
optimization method. The software packages provide fixing, linkage and setting 
minimum and maximum constraints for the fit parameters. The software packages 
include basic features for judging the quality of the fit. Besides the final value of χ2 
criterion, the weighted residuals, and the autocorrelation function are plotted, the 
confidential intervals for fit parameters are calculated by the exhaustive search or 
asymptotic standard errors  methods [82,83]. 
 Each software package consists of three applications: i) Measurements database, ii) 
Analysis database and iii) Main application. Measurements database is responsible for 
importing and storing measured data and preparing them for further analysis. Analysis 
database is designed for storing and viewing results of previous fits. Main application 
performs analysis of measured data and provides the possibility to save analysis results 
and analysis configurations to the analysis database. Main application has a multi 
document interface and allows comparing the results of different fits. Advanced 
operations with fit parameters including sorting, quick linkage and easy navigation 
significantly simplify management of large fit parameter sets. Two- and tree- 
dimensional charts provide convenient view of measured data and analysis results. 
 
Time Resolved Fluorescence and Anisotropy Data Processor 
(TRFADP) 
 The TRFADP software is developed to analyze the data collected from time-resolved 
fluorescence decay measurements; see a typical print-screen of the program in Figure 2.  
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Figure 2. Analysis interface of TRFA Data Processor software. 
 
 The TRFADP software provides fluorescence and anisotropy decay analysis [92] of 
fluorescence decays, taken either from measurements with one-exponential reference 
compound or from measurements with a scatter. Anisotropy analysis is implemented as 
simultaneous analysis of parallel and perpendicular fluorescence decays. Associative and 
non-associative anisotropy analysis is supported. While performing parameters 
estimation, the software takes into account several possible instrumental distortions that 
can exist in measured data (time shift, background, anisotropy G-factor). The core of 
software package contains two widely used models: a sum of exponentials and a dipole-
dipole energy transfer model. After analysis is done, the values of estimated parameters, 
final value of chi-square criterion and tree- and two-dimensional graphical dependencies 
of residuals and autocorrelation functions of residuals are available for judging the 
quality of the fit. 
 
Time Resolved Frequency Domain Fitting Software (TRFDFS) 
 The TRFDFS provides the data analysis of frequency domain experiments [93]. A 
print-screen of the program window is shown in Figure 3.  
 More than one frequency dependence of phase shift can simultaneously be fitted. A 
list of fitting models is included into the package: a multiexponentials, the dipole-dipole 
energy transfer model, and a diffusion-controlled collisional energy transfer model. 
User-defined models are supported. Besides setting minimum and maximum values for 
each  fit   parameter in  the TRFDFS creates complex parameter constraints presented in  
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Figure 3. Analysis interface of TRFD Fitting Software. 
 
the equation form. Runs test, Zχ2 test, and heteroscedasticity of weighted residuals are 
available for judging the quality of the fit. Two-dimensional data plot of the fluorescence 
decay in time domain allows viewing the theoretical decay curve that corresponds to the 
phase shift dependence obtained after the fit. A plot of fit parameters versus any external 
parameters can be monitored for studying the dependence of the fit parameters on 
external experiment parameters or conditions. The TRFDFS owns the possibility to save 
and restore main interface settings, including position, size and colors of the windows, in 
any time. 
 
Fluorescence Correlation Spectroscopy Data Processor (FCSDP) 
 The FCSDP software is developed to process the fluorescence correlation function. 
The software is fully compatible with ConfoCor and ConfoCor2 (Carl Zeiss Jena 
GmbH). A print-screen of the program window is represented in Figure 4.   
 The FCSDP can import both raw data traces and directly measured correlation 
functions. Software generates autocorrelation and crosscorrelation functions, photon 
counting distribution, first and single event distributions, inter-event time distribution 
from imported raw data. More than one correlation function can simultaneously be 
analyzed. Base software package contains a set of most popular models for correlation 
functions: pure-diffusion model, triplet-state model, conformational model, protonation 
model, and diffusion flow model. Quick and easy creation and saving of user-defined 
models is supported. Besides standard graphs displaying the analysis produce a graphical 
dependence of fit parameters on any variable of source characteristics. 
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Figure 4. Analysis interface of FCS Data Processor software. 

 
 All software packages can dynamically be upgrated with new models and more 
powerful optimization methods by including additional all libraries. This can be done 
without any necessity to update any other parts of application. These futures are possible 
due to the modular architecture of the software.  
 Due to the same object-oriented analysis scheme that underlies all software packages 
the interface of corresponding applications from different packages is quite similar. The 
similarity, simplicity and usability of the interface of developed software make easier the 
investigation of samples measured by different experimental methods. 
 The software packages are available for Windows 95/98/Me/Nt 4.0/2000/XP 
operating systems.  
 
Applications 
 The integrated data analysis approach has been applied to analyze the photophysical 
properties of thin films of porphyrin layers and photonic dye-zeolite antenna materials. 
These applications summarize the complex data analysis for three fluorescence 
spectroscopy areas: i) time domain fluorescence spectroscopy, ii) frequency domain 
fluorescence spectroscopy, and iii) fluorescence correlation spectroscopy.  
 
Time domain fluorescence spectroscopy 
 Porphyrin molecules are interesting building blocks for the construction of very thin 
films as artificial antenna�s systems, for organic solar cells [94,95]. As compared to 
inorganic films, organic films have received less attention, but their interest has been 
rapidly growing during the past decades. With the application to light-harvesting 
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antennas in solar cells in mind the energy transfer and excited state decay properties of 
artificial antenna�s have been investigated by the time-resolved fluorescence and 
fluorescence anisotropy measurements [96,97]. Steady state fluorescence spectra and the 
fluorescence polarization decay of porphyrin oligomers in solution as well as of thin 
solid films has been measured via streak camera time-correlated single photon counting 
methods and were analyzed by the integrated object-oriented approach, incorporating the 
global analysis, a multi-exponential model, a Förster point dipole-dipole model and 
Monte Carlo simulation models.  
 This application is focused on the structure and photophysics of 
 

• zinc mono-(4-pyridyl)-triphenylporphyrin (Zn(4-Py)TrPP) self-organizing into 
a tetramer [Zn(4-Py)TrPP]4  

• self-organizing zinc tetra(-octylphenyl)-porphyrin (ZnTOPP) layers on an inert 
substrate. 

 
 Films of Zn(4-Py)TrPP and ZnTOPP were made by spincoating from toluene. The 
global analysis of steady-state and time resolved fluorescence spectroscopy data has 
shown that ZnM(4-Py)TrPP in solution polymerizes to a tetramer through internal zinc-
pyridyl ligation (Figure 5). The results of the object-oriented analysis and Monte Carlo 
simulations of ZnM(4-Py)TrPP films agree with this tetramer model, yielding a 
fluorescence lifetime and nearest neighbor energy transfer rate constant of  ~ 1.5 ns  and 
~ 40 ns-1, respectively.  
 Applying our integrated approach to the experimental fluorescence- and 
fluorescence anisotropy decay of ZnTOPP films results in a multi-domain model of 
parallel porphyrin stacks. In each stack the porphyrin planes are perpendicular to the 
substrate and form an angle of 45û with the long stack axis (Figure 5). The calculations 
yield the rate constants for intra-stack and inter-stack energy transfer as ~ 1 ps-1 and ~ 80 
ns-1, whereas the fluorescence lifetime is ~ 1.8 ns.  
 

 
  
Figure 5. Molecular structure of [Zn(4-Py)TrPP]4 (left) and fragment of ZnTOPP layer on a quartz 
substrate (right). 
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Frequency domain spectroscopy 
 Excitation energy migration within assemblies of dyes embedded in hexagonal 
crystals of cylinder morphology is an attractive phenomenon for the construction of a 
photonic antenna [98,99]. Detailed knowledge of the zeolite structure, guest-dye 
spectroscopic properties, the nature and strength of the host-guest interactions is required 
to optimize energy migration throughout a cylinder crystal [100]. Whether a dye-zeolite 
antenna efficiently transports excitation energy is mainly determined by the mechanism 
and rate of energy transfer between the dyes embedded in the zeolite channels. The 
integrated approach and the Monte Carlo simulation-fitting method have been used to 
investigate the energy migration and excited-state properties of a photonic dye-zeolite 
antenna [101]. Using this computational technique the complex time-resolved frequency 
domain fluorescence decay of the guest-dye in the zeolite crystals has been analyzed.  
 This application considers photophysics, mechanism and the excitation energy 
transfer properties of a photonic bi-directional pyronine (Py), oxonine (Ox)-zeolite L 
antenna with the following loading composition: pPy = 0.01/0.02/0.08/0.13; pOx = 0.005 
(Figure 6). Unity corresponds to a fully dye-loaded crystal.  
  

 
 

Figure 6. Photonic Py, Ox-zeolite L antenna and corresponding energy migration pathways. 
 
 The energy donors (Py) are in the middle part of the crystal and the energy acceptors 
(Ox) at the ends of each channel (Figure 6). Having been excited by incident light, 
excited-state Py transfers its excitation to a neighboring ground-state Py. After a series of 
energy transfer steps the exciton reaches Ox. Energy migration is in competition with 
spontaneous emission, radiationless decay, and photochemically induced degradation 
[100]. Very fast energy migration is therefore crucial if the Ox should be reached before 
other processes take place. The Py-fluorescence decay becomes much faster in presence 
of Ox due to the irreversible energy transfer to Ox (Figure 7 A). The Ox-time-resolved 
fluorescence initially increases because of the energy transfer by Py. It then reaches a 
maximum before it decays (Figure 7 B). 
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 Applying our approach, which includes the intra- and inter-channel energy transfer 
simulation model, to the experimental data results in the following rate constants for 
intra- and inter-channel energy transfer: kET ≈ 2.5 ns-1 and k⊥

ET ≈ 0.2 ns-1 for the lowest 
used loading (pPy = 0.01; pOx = 0.005) and kET ≈ 450 ns-1 and k⊥

ET ≈ 30 ns-1 for the 
highest used loading (pPy = 0.13; pOx = 0.005). The energy transfer parameters kET and 
k⊥

ET, obtained from Monte Carlo simulation of the Py- and Ox-fluorescence decay, 
versus the Py-loading pPy are shown in Figures 7C and 7D, respectively.  
 The best-fitted energy trasnsfer rate constants kET and kET to the experimental data 
roughly exhibit the �pPy

2�-dependence versus the Py-loading and are in agreement with 
the results of Markoff chain calculations using the Förster theory and the point dipole-
dipole model [102].  
 The results of application show that the object-oriented approach and the Monte 
Carlo simulation of the energy processes in the photonic Py,Ox-zeolite L antenna  is a 
successful method to extract the relevant kinetic parameters from the experimental 
frequency domain complex fluorescence decay of the Py and Ox guest dyes.  
 

 
  
Figure 7. The best multi-exponential fits of the fluorescence decay of Py (A) and Ox (B) after 
specific excitation of Py and energy transfer parameters kET, k⊥

ET determined via Monte Carlo 
simulation of the Py- (C) and Ox- (D) fluorescence decay. 
 
Fluorescence correlation spectroscopy  
 A promising field with great potential for future application is the use of the 
integrated approach for the analysis of FCS measurements. This opens the possibility to 
analyze wide variety of samples ranging from simple dyes to living cells [42,103,104].  
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Summary  
 We described the principles and structure of the integrated object�oriented 
conception of data analysis. This conception combines a set of integrated and interacting 
mathematical routines that ensures carrying out the complete analysis of measured or 
simulated data and can easily be adopted for application in any area of fluorescence 
spectroscopy. The proposed object�oriented conception has been resulted in three 
software packages. The software packages were developed to process time domain 
fluorescence, frequency domain fluorescence, and fluorescence correlation spectroscopy 
data. Several important applications were outlined. 
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