Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: http://elib.bsu.by/handle/123456789/51958
Заглавие документа: Sparse principal balances for high-dimensional compositional data
Авторы: Mert, Can
Filzmoser, Peter
Hron, Karel
Дата публикации: 2013
Издатель: Minsk : Publ. center of BSU
Библиографическое описание источника: Computer Data Analysis and Modeling: Theoretical and Applied Stochastics : Proc. of the Tenth Intern. Conf., Minsk, Sept. 10–14, 2013. Vol 1. — Minsk, 2013. — P. 173-176
Аннотация: Extracting the most essential information out of compositional data can be done by a method called principal balances [5]. This method is, however, compu- tationally only feasible for low-dimensional data. For high-dimensional composi- tional data we introduce the concept of sparse principal balances, a method that relies on sparse principal component analysis to construct principal directions with many zero loadings. Sparse principal balances are fast to compute even for very high-dimensional data, and their interpretation is easier than principal balances.
URI документа: http://elib.bsu.by/handle/123456789/51958
Располагается в коллекциях:2013. Computer Data Analysis and Modeling. Vol 1
Vol. 1

Полный текст документа:
Файл Описание РазмерФормат 
173-176.pdf400,25 kBAdobe PDFОткрыть



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.