Logo BSU

Please use this identifier to cite or link to this item: http://elib.bsu.by/handle/123456789/14694
Title: Poynting singularities in optical dynamic systems
Authors: Novitsky, Andrey V.
Barkovsky, L. M.
Issue Date: 2009
Citation: PHYSICAL REVIEW A 79, 033821 2009
Abstract: We develop the theory of the Poynting singularities critical points of the Poynting vector extending the theory of dynamic systems to classify and analyze optical singularities. An optical dynamic system is described by the three first-order differential equations for the image point, with the tangent to the image point trajectory being the Poynting vector. Important feature of the Poynting singularities is the existence of the polarization induced singularities arise due to the specific field polarization along with the field-induced ones appear owing to the vanishing the fields. We analyze not only isolated critical points, but the manifolds of singularities forming lines and surfaces as well. We define the types of the singular points vortex, saddle, sink, source, and focus using the trace and determinant of the stability matrix. Such a criterion and the study of the dependence on parameter bifurcations are applied for a number of examples. We offer to study the chaotic dynamic of the image point in future.
URI: http://elib.bsu.by/handle/123456789/14694
Appears in Collections:Кафедра теоретической физики и астрофизики

Files in This Item:
File Description SizeFormat 
PhysRevA_79_033821.pdf1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.