Logo BSU

Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот документ: http://elib.bsu.by/handle/123456789/10820
Заглавие документа: Неравенства типа Бернштейна для производных рациональных функций в пространствах Lp при p<1
Авторы: Пекарский, Александр Антонович
Шталь, Г.
Тема: ЭБ БГУ::ЕСТЕСТВЕННЫЕ И ТОЧНЫЕ НАУКИ::Математика
Дата публикации: 1995
Библиографическое описание источника: Матем. сб. - 1995. - Т. 186, № 1. - С. 119–130
Аннотация: В работе показано, что если $r$ – рациональная функция степени $n$, $0<p<1$, причем $1/p\notin\mathbb{N}$, и $r\in L_p(-1,1)$, то для любого $s\in\mathbb{N}$ выполняется неравенство $\displaystyle \left(\int _{-1}^1\vert r^{(s)}(x)\vert^\sigma\,dx\right)^{1/\sigma} \leqslant cn^s\left(\int _{-1}^1\vert r(x)\vert^p\,dx\right )^{1/p},$ (1) где $\sigma =(s+1/p)^{-1}$, а $c>0$ и зависит лишь от $p$ и $s$. Задача о получении неравенства (1) поставлена Е. А. Севастьяновым в 1973 г. и была решена до настоящего времени для $1<p\leqslant\infty$. В случае $1/p\in\mathbb{N}$ это неравенство не выполняется. В работе даны также некоторые приложения (1) к задачам рациональной аппроксимации. Аналогичные вопросы рассматриваются для прямой и окружности.
URI документа: http://elib.bsu.by/handle/123456789/10820
Располагается в коллекциях:Архив статей механико-математического факультета до 2016 г.



Все документы в Электронной библиотеке защищены авторским правом, все права сохранены.