STABILITY OF CANONICAL PERIODIC MATRIX IMPULSIVE DIFFERENTIAL EQUATIONS

V.A. Chiricalov

Kyıv research national Taras Shevchenko University, pr Glushkova 2, bild 7, 03022, Kyıv, Ukraine, chva@mycard.net.ua

In our report we consider canonical periodic matrix impulsive differential equation

$$dZ/dt - i\mathcal{J}\mathcal{A}(t)Z = 0, \quad t \neq t_{j}; \quad \triangle(Z) = i\mathcal{J}\mathcal{D}_{j}X, \quad t = t_{j}, \tag{1}$$

where i is complex identity, $Z \in C_2^{n \times m}$, $C^{n \times m}$ is the space of complex $n \times m$ matrices, $Z = (X,Y)^T$, $X,Y \in C^{n \times m}$. $\mathcal{J} = \mathcal{J}^*$. $\mathcal{J}^{-1} = \mathcal{J}$, $\mathcal{J} = \mathcal{P}_1 - \mathcal{P}_2$, \mathcal{P}_i are projection operator in $C_2^{n \times m}$, $\mathcal{P}_1 Z = X$, $\mathcal{P}_2 Z = Y$, $\mathcal{A} = \begin{pmatrix} [A_{11}] & [A_{12}] \\ [A_{21}] & [A_{22}] \end{pmatrix}$, $\mathcal{D}_j = \begin{pmatrix} 0 & 0 \\ 0 & -[D_j] \end{pmatrix}$, $\mathcal{A}^*(t) = \mathcal{A}(t)$, $[D_j]Y = D_j Y \tilde{D}_j$, $[A_{i1}]X = A_{i1} X \tilde{A}_{i1}$, $[A_{i2}]Y = A_{i2} Y \tilde{A}_{i2}$, $A_{i1}, D_j \in C^{n \times n}$, $\tilde{A}_{i2}, \tilde{D}_j \in C^{m \times m}$, i = 1, 2, $||Z|| = \sqrt{\text{Tr}(X^*X) + Tr(Y^*Y)}$. The equations (1) may be rewritten as one impulsive equation [1] in double phase space $C_2^{n \times m} = C^{n \times m} \oplus C^{n \times m}$

$$dZ/dt = i \mathcal{J} \left(\mathcal{A}(t) + \sum_{j} \mathcal{D}_{j} \delta(t - t_{j}) \right) Z.$$
 (2)

In more general case $\mathcal{J} = \operatorname{sign} \mathcal{W} = \mathcal{W} |\mathcal{W}|^{-1}$, $|\mathcal{W}| = (\mathcal{W}^* \mathcal{W})^{(1/2)}$. In real double Hilbert space $\mathcal{H}^{(2)} = \mathcal{H} \oplus \mathcal{H}$ the role of operator $(i\mathcal{J})$ play operator $\mathcal{J}_{\Gamma} = \begin{pmatrix} 0 & [I] \\ -[I] & 0 \end{pmatrix}$, so-called symplectic identity in real double Hilbert space $\mathcal{H}^{(2)}$. The equation

$$dZ/dt = \mathcal{J}_{\Gamma} \left(\mathcal{A}(t) + \sum_{j} \mathcal{D}_{j} \delta(t - t_{j}) \right) Z, \tag{3}$$

than is named Hamiltonian equation.

The monodromy operator $\mathcal{U}(T)$ of equation (1) is \mathcal{J} -unitary, i.e.

$$\mathcal{U}^*(T)\mathcal{J}\mathcal{U}(T) = \mathcal{J}. \tag{4}$$

The stability of equation (1) means that the monodromy operator $\mathcal{U}(T)$ is stable [2].

Theorem 1. For the equation (1) to be stable necessary and sufficient that the double Hilbert space $\mathcal{H}^{(2)}$ be decomposed to \mathcal{J} -orthogonal subspaces \mathcal{H}_1 and \mathcal{H}_2 ; $\mathcal{H}^{(2)} = \mathcal{H}_1 \oplus \mathcal{H}_2$, which are invariant for the monodromy operator $\mathcal{U}(T)$ and subspace \mathcal{H}_1 be \mathcal{J} -positive, subspace \mathcal{H}_2 be \mathcal{J} -negative.

Corollary 1. If the canonical periodic matrix impulsive equation is stable than it is reducible.

References

- 1. Chiricalov V.A. Matrix impulsive periodic differential equation of the second order // Proc. of XII International Scientific Conference for Differential equations (Erugin's readings 2007). Minsk, Institute of Mathematics of NAS of Belarus, 2007. P. 191-198.
- 2. Daletskij Yu.L., Krein M.G. Stability of solutions of differential equations in Banach space. Moscow, Nauka, 1970.