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In our report we consider canonical periodic matrix impulsive differential equation
dZfdt - i TA({)Z =0, t#t; AZ)=iID,X, t=t,, (1)

where 4 is complex identity, Z € C3*™, C™™ is the space of complex n X m matrices, Z =
= (X, "), X,y eCcv™ J=J* J V=7, J =P —P,y, P, are projection operator
. nxm — . — [All] [AIQ] _ 0 0 *

1 02 3 P]Z - X, PQZ = Y-, .A - ( [.A.zl] [A22] )a DJ = ( 0 _[D‘j] ), A (t) = A(t)s
[DJ]Y = D]Y5J} [Azl]X - AI].X;{‘HE {Az2]Y = A12Y12[323 Aﬂ) Dj € Cnxn’ gz?a 5; S mem’
i=12, |1Z)| = /Tt (X*X) + Tr(Y*Y). The equations (1) may be rewritten as one impulsive
equation [1} in double phase space C3*™ = C"*™ g C™*™

dZ[dt = 1T (A(t) + > _D,8(t —t,)) Z. (2)
J

In more general case J =signW = W |W|™', [W| = W*W){1/2), In real double Hilbert space
H?) = H@H the role of operator (27) play operator Jr = ( —([)I] [é] ) , so-called symplectic
identity in real double Hilbert space H(?. The equation

dZ/dt = Jr(A(t) + Y _D,6(t — t,)) Z, (3)
¥

than is named Hamiltonian equation.
The monodromy operator U(T') of equation (1) is J -unitary, i.e.

UN(T)JUT) = 7. @
The stability of equation (1) means that the monodromy operator U(T) is stable [2].
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Theorem 1. For the equation (1) to be stable necessary and sufficient that the double Hilbert
space 1?2 be decomposed to T -orthogonal subspaces My and Hs; HE = H, & Hy, which are
invariant for the monodromy operator U(T) and subspace Hy be T -positive, subspace Ho be
J -negative.

Corollary 1. If the canonical periodic matriz impulsive equation is stable than it is reducible.
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