TOPOLOGY OF THE FREE PRODUCTS OF PARATOPOLOGICAL GROUPS

N.M. Pyrch

Ukrainian Academy of Printing, Pidgoloslo str. 19, 79020, Lviv, Ukraine pnazar@ukr.net

By a paratopological group we understand a pair (G, τ) consisting of a group G and topology τ on G making the group operation $\cdot : G \times G \to G$ of G continuous.

Definition 1. Let $\{G_i : i \in I\}$ be a set of paratopological groups. Then the paratopological group G is said to be a free topological product of $\{G_i : i \in I\}$, denoted by $\prod_{i \in I} {}^*G_i$, if it has properties:

- 1) for each $i \in I$, G_i is a subgroup of G;
- 2) G is generated algebraically by $\bigcup_{i \in I} G_i$;
- 3) if for each $i \in I$, f_i is a continuous homomorphism of G_i into paratopological group H, then there exists a continuous homomorphism f of G into H such that $f = f_i$ on G_i for each $i \in I$.

Theorem 1. Let $\{G_i : i \in I\}$ be any set of paratopological groups. Then free topological product $\prod_{i \in I} {}^*G_i$ exists.

A metric d on group G is called left-invariant if d(ax, ay) = d(x, y) for all $x, y, a \in G$.

Theorem 2. Let G and H be a nontrivial paratopological groups. Then free topological product G * H is metrizable by left-invariant metric if and only if G and H are discrete.

Theorem 3. Let G and H be a nontrivial paratopological T_0 -groups. Then free topological product G * H is locally compact if and only if G and H are discrete.